{"title":"Magnetic equivalent circuit modeling of a permanent magnet linear synchronous motor composed of curved segments","authors":"Gerd Fuchs , Andreas Kugi , Wolfgang Kemmetmüller","doi":"10.1016/j.mechatronics.2024.103256","DOIUrl":null,"url":null,"abstract":"<div><div>This paper advances magnetic equivalent circuit (MEC) modeling for permanent magnet linear synchronous motors (PMLSMs) with arbitrarily curved segments. As PMLSMs are increasingly utilized in industrial applications, accurate and computationally efficient modeling techniques are paramount. This research proposes a novel approach that meets these requirements and paves the way for real-time model-based control, observers, and estimation strategies. Existing MEC models for PMLSMs primarily consider straight stator segments, neglecting the impact of the curvature of curved segments commonly used in modern PMLSM designs. The approach proposed in this paper systematically incorporates these effects into the MEC model for PMLSMs to address this limitation. As demonstrated by several validation experiments, a calibration concept based on measurements further enhances the model’s accuracy. Finally, a method for efficiently implementing the proposed MEC model for a whole PMLSM setup significantly reduces the computation time compared to the standard implementation.</div></div>","PeriodicalId":49842,"journal":{"name":"Mechatronics","volume":"104 ","pages":"Article 103256"},"PeriodicalIF":3.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechatronics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0957415824001211","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper advances magnetic equivalent circuit (MEC) modeling for permanent magnet linear synchronous motors (PMLSMs) with arbitrarily curved segments. As PMLSMs are increasingly utilized in industrial applications, accurate and computationally efficient modeling techniques are paramount. This research proposes a novel approach that meets these requirements and paves the way for real-time model-based control, observers, and estimation strategies. Existing MEC models for PMLSMs primarily consider straight stator segments, neglecting the impact of the curvature of curved segments commonly used in modern PMLSM designs. The approach proposed in this paper systematically incorporates these effects into the MEC model for PMLSMs to address this limitation. As demonstrated by several validation experiments, a calibration concept based on measurements further enhances the model’s accuracy. Finally, a method for efficiently implementing the proposed MEC model for a whole PMLSM setup significantly reduces the computation time compared to the standard implementation.
期刊介绍:
Mechatronics is the synergistic combination of precision mechanical engineering, electronic control and systems thinking in the design of products and manufacturing processes. It relates to the design of systems, devices and products aimed at achieving an optimal balance between basic mechanical structure and its overall control. The purpose of this journal is to provide rapid publication of topical papers featuring practical developments in mechatronics. It will cover a wide range of application areas including consumer product design, instrumentation, manufacturing methods, computer integration and process and device control, and will attract a readership from across the industrial and academic research spectrum. Particular importance will be attached to aspects of innovation in mechatronics design philosophy which illustrate the benefits obtainable by an a priori integration of functionality with embedded microprocessor control. A major item will be the design of machines, devices and systems possessing a degree of computer based intelligence. The journal seeks to publish research progress in this field with an emphasis on the applied rather than the theoretical. It will also serve the dual role of bringing greater recognition to this important area of engineering.