Comparison of three artificial intelligence methods for predicting 90% quantile interval of future insulin sensitivity of intensive care patients

IF 1.8 Q3 AUTOMATION & CONTROL SYSTEMS
Bálint Szabó , Ákos Szlávecz , Béla Paláncz , Omer S. Alkhafaf , Ameer B. Alsultani , Katalin Kovács , J. Geoffrey Chase , Balázs István Benyó
{"title":"Comparison of three artificial intelligence methods for predicting 90% quantile interval of future insulin sensitivity of intensive care patients","authors":"Bálint Szabó ,&nbsp;Ákos Szlávecz ,&nbsp;Béla Paláncz ,&nbsp;Omer S. Alkhafaf ,&nbsp;Ameer B. Alsultani ,&nbsp;Katalin Kovács ,&nbsp;J. Geoffrey Chase ,&nbsp;Balázs István Benyó","doi":"10.1016/j.ifacsc.2024.100284","DOIUrl":null,"url":null,"abstract":"<div><div>Insulin dosing of hyperglycemic patients in the intensive care unit (ICU) is a complex and nonlinear clinical control problem. Recent model-based glycemic control protocols predict a patient-specific and time-specific future insulin sensitivity distribution, which defines the future patient state in response to insulin and nutrition inputs. The prediction methods provide a 90% confidence interval for a future insulin sensitivity distribution for a given time horizon, making the prediction problem more specific compared to common prediction problems where the aim is to predict the expected value of the given stochastic parameter. This study proposes three alternative artificial intelligence-based insulin sensitivity prediction methods to improve the prediction accuracy and make prediction parameters better fit the clinical requirements. The proposed prediction methods use different neural network models: a classification deep neural network model, a Mixture Density Network model, and a Quantile Regression-based model. A large patient data set was used to create the neural network models, including 2357 patients and 92646 blood glucose measurements from three clinical sites (Christchurch, New Zealand, Gyula, Hungary, and Liege, Belgium). Prediction accuracy was assessed by statistical metrics expressing clinical requirements, as well as via validated in-silico virtual patient simulations comparing the clinical performance of a proven glycaemic control protocol using the alternative prediction methods to assess impact on glycemic control performance and thus the need for these alternative models.</div></div>","PeriodicalId":29926,"journal":{"name":"IFAC Journal of Systems and Control","volume":"30 ","pages":"Article 100284"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC Journal of Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468601824000452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Insulin dosing of hyperglycemic patients in the intensive care unit (ICU) is a complex and nonlinear clinical control problem. Recent model-based glycemic control protocols predict a patient-specific and time-specific future insulin sensitivity distribution, which defines the future patient state in response to insulin and nutrition inputs. The prediction methods provide a 90% confidence interval for a future insulin sensitivity distribution for a given time horizon, making the prediction problem more specific compared to common prediction problems where the aim is to predict the expected value of the given stochastic parameter. This study proposes three alternative artificial intelligence-based insulin sensitivity prediction methods to improve the prediction accuracy and make prediction parameters better fit the clinical requirements. The proposed prediction methods use different neural network models: a classification deep neural network model, a Mixture Density Network model, and a Quantile Regression-based model. A large patient data set was used to create the neural network models, including 2357 patients and 92646 blood glucose measurements from three clinical sites (Christchurch, New Zealand, Gyula, Hungary, and Liege, Belgium). Prediction accuracy was assessed by statistical metrics expressing clinical requirements, as well as via validated in-silico virtual patient simulations comparing the clinical performance of a proven glycaemic control protocol using the alternative prediction methods to assess impact on glycemic control performance and thus the need for these alternative models.
比较三种人工智能方法预测重症监护患者未来胰岛素敏感性的 90% 量级区间
重症监护室(ICU)中高血糖患者的胰岛素剂量是一个复杂的非线性临床控制问题。最近推出的基于模型的血糖控制方案预测了特定患者和特定时间的未来胰岛素敏感性分布,该分布定义了未来患者对胰岛素和营养输入的反应状态。这些预测方法为给定时间范围内的未来胰岛素敏感性分布提供了 90% 的置信区间,与旨在预测给定随机参数预期值的普通预测问题相比,使预测问题更加具体。本研究提出了三种基于人工智能的胰岛素敏感性预测方法,以提高预测精度,使预测参数更符合临床要求。所提出的预测方法使用了不同的神经网络模型:分类深度神经网络模型、混合密度网络模型和基于量回归的模型。建立神经网络模型时使用了大量患者数据集,包括来自三个临床地点(新西兰克赖斯特彻奇、匈牙利久拉和比利时列日)的 2357 名患者和 92646 次血糖测量结果。预测准确性通过表达临床要求的统计指标进行评估,并通过经过验证的虚拟患者室内模拟,比较使用替代预测方法的成熟血糖控制方案的临床表现,以评估对血糖控制效果的影响,从而确定是否需要使用这些替代模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IFAC Journal of Systems and Control
IFAC Journal of Systems and Control AUTOMATION & CONTROL SYSTEMS-
CiteScore
3.70
自引率
5.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信