{"title":"Synthesis of bifunctional copolymeric nanofibers with selective extracting U(VI) from the solution and antibacterial property","authors":"Jingbo Zhou , Yuedi Zhou , Zhen Zhang , Changqi Heng , Zongxian Jiao , Hongxia Zhang","doi":"10.1016/j.jece.2024.114229","DOIUrl":null,"url":null,"abstract":"<div><div>Facing the problem of future nuclear fuel shortage, developing high-performance adsorbent materials is key. In this work, the amidoxime group/imidazole functionalized ionic liquid copolymer fibers containing bromide salts, and fluoroborate salts (namely P(AO/VEIMBr)<sub>8</sub> and P(AO/VEIMBF<sub>4</sub>)<sub>6</sub>) were prepared by a one-pot method and free radical polymerization, hydroxyl amination reaction and electrostatic spinning, and characterized by SEM, FT-IR, and <sup>1</sup> H NMR. The influence of solid-liquid ratio, ionic strength, and adsorption time on the adsorption performance was investigated by batch adsorption experiments. In the meanwhile, the adsorption kinetics and thermodynamic processes of U(VI) on the copolymer fibers was also studied. Adsorption mechanism of U (VI) on polymer fibers was explored by XPS spectroscopic analysis combined with DFT method. Finally, the antimicrobial properties of the copolymer fibers were tested. The experimental results showed that the polymer nanofibers synthesized for U(VI) has a fast adsorption, high adsorption capacity at ionic strength close to seawater, and excellent reusability. The adsorption process conformed to the pseudo-second-order kinetic model and Langmuir model, which indicated that chemical adsorption and monolayer adsorption are dominant for adsorption U(VI) on the polymer nanofibers, and exhibits the highest Uranium adsorption capacity (76.92 mg/g and 81.96 mg/g at pH=8.1+0.1, respectively). XPS result showed the amine nitrogen and oxime oxygen in the amidoxime functional group were coordinated with uranyl(VI) ions. The antibacterial experiments showed that the copolymer fibers have antimicrobial properties and the antibacterial rate is over 90 %. Therefore, the nanofibers may be a promising material for extracting uranium from the weak alkaline wastewater or seawater.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114229"},"PeriodicalIF":7.4000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724023601","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Facing the problem of future nuclear fuel shortage, developing high-performance adsorbent materials is key. In this work, the amidoxime group/imidazole functionalized ionic liquid copolymer fibers containing bromide salts, and fluoroborate salts (namely P(AO/VEIMBr)8 and P(AO/VEIMBF4)6) were prepared by a one-pot method and free radical polymerization, hydroxyl amination reaction and electrostatic spinning, and characterized by SEM, FT-IR, and 1 H NMR. The influence of solid-liquid ratio, ionic strength, and adsorption time on the adsorption performance was investigated by batch adsorption experiments. In the meanwhile, the adsorption kinetics and thermodynamic processes of U(VI) on the copolymer fibers was also studied. Adsorption mechanism of U (VI) on polymer fibers was explored by XPS spectroscopic analysis combined with DFT method. Finally, the antimicrobial properties of the copolymer fibers were tested. The experimental results showed that the polymer nanofibers synthesized for U(VI) has a fast adsorption, high adsorption capacity at ionic strength close to seawater, and excellent reusability. The adsorption process conformed to the pseudo-second-order kinetic model and Langmuir model, which indicated that chemical adsorption and monolayer adsorption are dominant for adsorption U(VI) on the polymer nanofibers, and exhibits the highest Uranium adsorption capacity (76.92 mg/g and 81.96 mg/g at pH=8.1+0.1, respectively). XPS result showed the amine nitrogen and oxime oxygen in the amidoxime functional group were coordinated with uranyl(VI) ions. The antibacterial experiments showed that the copolymer fibers have antimicrobial properties and the antibacterial rate is over 90 %. Therefore, the nanofibers may be a promising material for extracting uranium from the weak alkaline wastewater or seawater.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.