{"title":"Numerical study of heat transfer and entropy generation in ribbed microchannel with nanofluid and multiple jet impingement","authors":"","doi":"10.1016/j.csite.2024.105208","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the high miniaturization of electronic devices, there is an urgent need to eliminate high heat flux in electronic devices and improve their heat transfer characteristics. This article simulated the single-phase flow to study the effects of five different arrangements of column ribs and different volume concentration (1 %–5%) of nanofluids on the convective heat transfer coefficient, pressure drop, and the irreversibility of flow heat transfer in ribbed microchannel heat sinks with multiple jets impingement (MJI) within the Re range of 200–1000. The working coolants is deionized water and water - Al<sub>2</sub>O<sub>3</sub> nanofluid. Different important parameters, such as the characteristic of heat transfer and flow, Performance Evaluation Criterion (<em>PEC</em>), and entropy generation are investigated. The results indicated that MJI III can effectively improve the convective heat transfer coefficient while the increase in pressure drop is not obvious. The <em>PEC</em> of MJI III is 1.408 at Re = 600, which is much higher than the other MJIs. Additionally, the cooling performance and irreversibility of water-Al<sub>2</sub>O<sub>3</sub> nanofluid are superior to those of deionized water within the research scope. With the concentration, the irreversibility of flow and heat transfer of water-Al<sub>2</sub>O<sub>3</sub> nanofluid increasing increases. The data shows that, the overall performance is optimal when <span><math><mrow><mi>φ</mi></mrow></math></span> = 1 %, and its highest <em>PEC</em> is 1.75 at Re = 400.</div></div>","PeriodicalId":9658,"journal":{"name":"Case Studies in Thermal Engineering","volume":null,"pages":null},"PeriodicalIF":6.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Case Studies in Thermal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214157X24012395","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the high miniaturization of electronic devices, there is an urgent need to eliminate high heat flux in electronic devices and improve their heat transfer characteristics. This article simulated the single-phase flow to study the effects of five different arrangements of column ribs and different volume concentration (1 %–5%) of nanofluids on the convective heat transfer coefficient, pressure drop, and the irreversibility of flow heat transfer in ribbed microchannel heat sinks with multiple jets impingement (MJI) within the Re range of 200–1000. The working coolants is deionized water and water - Al2O3 nanofluid. Different important parameters, such as the characteristic of heat transfer and flow, Performance Evaluation Criterion (PEC), and entropy generation are investigated. The results indicated that MJI III can effectively improve the convective heat transfer coefficient while the increase in pressure drop is not obvious. The PEC of MJI III is 1.408 at Re = 600, which is much higher than the other MJIs. Additionally, the cooling performance and irreversibility of water-Al2O3 nanofluid are superior to those of deionized water within the research scope. With the concentration, the irreversibility of flow and heat transfer of water-Al2O3 nanofluid increasing increases. The data shows that, the overall performance is optimal when = 1 %, and its highest PEC is 1.75 at Re = 400.
期刊介绍:
Case Studies in Thermal Engineering provides a forum for the rapid publication of short, structured Case Studies in Thermal Engineering and related Short Communications. It provides an essential compendium of case studies for researchers and practitioners in the field of thermal engineering and others who are interested in aspects of thermal engineering cases that could affect other engineering processes. The journal not only publishes new and novel case studies, but also provides a forum for the publication of high quality descriptions of classic thermal engineering problems. The scope of the journal includes case studies of thermal engineering problems in components, devices and systems using existing experimental and numerical techniques in the areas of mechanical, aerospace, chemical, medical, thermal management for electronics, heat exchangers, regeneration, solar thermal energy, thermal storage, building energy conservation, and power generation. Case studies of thermal problems in other areas will also be considered.