Satyanarayana Lalam , Amiya K Jana , Srinivas Dwarapudi
{"title":"Formulating iron ore pellet induration process in an industrial straight grate system: Real-time experimentation and validation","authors":"Satyanarayana Lalam , Amiya K Jana , Srinivas Dwarapudi","doi":"10.1016/j.tsep.2024.102928","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the complex process of iron ore pellet induration is crucial in a straight grate system in the steelmaking industry. There is no attempt made so far to predict the behavior of this unit considering the physiochemical processes (drying, carbon combustion and limestone calcination) along with the heat transfer within the pellet, and between the hot gas and pellet. Moreover, the reported models are validated mainly with the pot test data. To address these research gaps, in this contribution, a rigorous model framework is proposed for an industrial induration unit considering all these above-mentioned issues together with some other practical aspects, including the heat transfer from hot gas to grate bar and heat loss due to air leakage into the system. To validate this rigorous formulation, attempt is further made to perform the real-time experimentation with induration system equipped with a thermocar. It is shown first time that the predicted temperature profiles of the pellets, grate bar and exit gas associated with the running bed are consistent with the plant data. The fuel consumption data is further obtained to investigate the performance of the proposed formulation at different operating regimes. It is observed that the mean absolute percentage error (MAPE) between the measured and predicted fuel rates is reasonably low (i.e., 4.2%). With this, it is recommended to use the proposed formulation for online property prediction, process design, optimization, troubleshooting, control and scale-up of the induration unit.</div></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":"55 ","pages":"Article 102928"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451904924005468","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the complex process of iron ore pellet induration is crucial in a straight grate system in the steelmaking industry. There is no attempt made so far to predict the behavior of this unit considering the physiochemical processes (drying, carbon combustion and limestone calcination) along with the heat transfer within the pellet, and between the hot gas and pellet. Moreover, the reported models are validated mainly with the pot test data. To address these research gaps, in this contribution, a rigorous model framework is proposed for an industrial induration unit considering all these above-mentioned issues together with some other practical aspects, including the heat transfer from hot gas to grate bar and heat loss due to air leakage into the system. To validate this rigorous formulation, attempt is further made to perform the real-time experimentation with induration system equipped with a thermocar. It is shown first time that the predicted temperature profiles of the pellets, grate bar and exit gas associated with the running bed are consistent with the plant data. The fuel consumption data is further obtained to investigate the performance of the proposed formulation at different operating regimes. It is observed that the mean absolute percentage error (MAPE) between the measured and predicted fuel rates is reasonably low (i.e., 4.2%). With this, it is recommended to use the proposed formulation for online property prediction, process design, optimization, troubleshooting, control and scale-up of the induration unit.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.