Abhay B. Fulke , Pallavi S. Salgaonkar , Gopal Krushna Swain , Komal Khade , G. Udhaba Dora
{"title":"Microbial responses on upwelling signature across reversal wind pattern in tropical coastal environment off Mumbai, India","authors":"Abhay B. Fulke , Pallavi S. Salgaonkar , Gopal Krushna Swain , Komal Khade , G. Udhaba Dora","doi":"10.1016/j.marpolbul.2024.117043","DOIUrl":null,"url":null,"abstract":"<div><div>Upwelling promotes marine productivity through water column mixing. The process disturbs the ecosystem, causing oxygen depletion and thermal variability. This study analyses effect of upwelling processes on microbial signature in coastal waters off Mumbai. The coastal environment with seasonal reversal winds was analysed using data during ten cruises. Coastal metocean processes are examined using water quality parameters and the Ekman approximation with wind stress. This analysis explains oxygen depletion and coastal upwelling, influenced by seasonal reversal wind pattern. The study connects hypoxia in the coastal water column to wind-induced upwelling. Concurrently, microbial structure is assessed through metrics such as Total Viable Count, Total Bacterial Count, Sulfate Reducing Bacteria (SRB), and denitrifiers. Notably, high levels of SRB are observed during hypoxia associated with coastal upwelling. This study investigates microbial level with combined result of physical processes and water quality parameters.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025326X24010208","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Upwelling promotes marine productivity through water column mixing. The process disturbs the ecosystem, causing oxygen depletion and thermal variability. This study analyses effect of upwelling processes on microbial signature in coastal waters off Mumbai. The coastal environment with seasonal reversal winds was analysed using data during ten cruises. Coastal metocean processes are examined using water quality parameters and the Ekman approximation with wind stress. This analysis explains oxygen depletion and coastal upwelling, influenced by seasonal reversal wind pattern. The study connects hypoxia in the coastal water column to wind-induced upwelling. Concurrently, microbial structure is assessed through metrics such as Total Viable Count, Total Bacterial Count, Sulfate Reducing Bacteria (SRB), and denitrifiers. Notably, high levels of SRB are observed during hypoxia associated with coastal upwelling. This study investigates microbial level with combined result of physical processes and water quality parameters.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.