U. Rogulis, A. Fedotovs, Dz Berzins, G. Krieke, L. Skuja, A. Antuzevics
{"title":"Low temperature recombination luminescence of Mg3Y2Ge3O12:Tb3+","authors":"U. Rogulis, A. Fedotovs, Dz Berzins, G. Krieke, L. Skuja, A. Antuzevics","doi":"10.1016/j.omx.2024.100368","DOIUrl":null,"url":null,"abstract":"<div><div>A study was conducted to examine the recombination processes in persistent phosphor Mg<sub>3</sub>Y<sub>2</sub>Ge<sub>3</sub>O<sub>12</sub>:Tb<sup>3+</sup> garnet at low temperatures. Photoluminescence (PL), recombination luminescence (RL), electron paramagnetic resonance (EPR), and EPR detected by PL or RL were measured.</div><div>In samples with low Tb<sup>3+</sup> concentration, a broad PL and RL band around 400–450 nm and characteristic Tb<sup>3+</sup> lines were observed. However, in samples with high Tb<sup>3+</sup> concentration, only Tb<sup>3+</sup> lines were present. Both the broad-band and the line components exhibit long-lasting tunneling luminescence with hyperbolic decay. After 263 nm UV irradiation signals of intrinsic electron (F-type) and hole (V-type) trapping centres were observed in the EPR spectra. Such signals were also observed in RL-detected EPR spectra, indicating that the broad RL band at low Tb<sup>3+</sup> concentrations originates from tunneling recombination between these intrinsic traps. At high Tb<sup>3+</sup> concentrations, the RL-EPR spectrum was not observed, suggesting that intrinsic electron and Tb-related hole trapping centres probably participate in the tunneling recombination.</div></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"24 ","pages":"Article 100368"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590147824000809","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
A study was conducted to examine the recombination processes in persistent phosphor Mg3Y2Ge3O12:Tb3+ garnet at low temperatures. Photoluminescence (PL), recombination luminescence (RL), electron paramagnetic resonance (EPR), and EPR detected by PL or RL were measured.
In samples with low Tb3+ concentration, a broad PL and RL band around 400–450 nm and characteristic Tb3+ lines were observed. However, in samples with high Tb3+ concentration, only Tb3+ lines were present. Both the broad-band and the line components exhibit long-lasting tunneling luminescence with hyperbolic decay. After 263 nm UV irradiation signals of intrinsic electron (F-type) and hole (V-type) trapping centres were observed in the EPR spectra. Such signals were also observed in RL-detected EPR spectra, indicating that the broad RL band at low Tb3+ concentrations originates from tunneling recombination between these intrinsic traps. At high Tb3+ concentrations, the RL-EPR spectrum was not observed, suggesting that intrinsic electron and Tb-related hole trapping centres probably participate in the tunneling recombination.