{"title":"Hyaluronan-Based Hydrogels for 3D Modeling of Tumor Tissues.","authors":"Amir M Alsharabasy, Abhay Pandit","doi":"10.1089/ten.TEC.2024.0271","DOIUrl":null,"url":null,"abstract":"<p><p>Although routine two-dimensional (2D) cell culture techniques have advanced basic cancer research owing to their simplicity, cost-effectiveness, and reproducibility, they have limitations that necessitate the development of advanced three-dimensional (3D) tumor models that better recapitulate the tumor microenvironment. Various biomaterials have been used to establish these 3D models, enabling the study of cancer cell behavior within different matrices. Hyaluronic acid (HA), a key component of the extracellular matrix (ECM) in tumor tissues, has been widely studied and employed in the development of multiple cancer models. This review first examines the role of HA in tumors, including its function as an ECM component and regulator of signaling pathways that affect tumor progression. It then explores HA-based models for various cancers, focusing on HA as a central component of the 3D matrix and its mobilization within the matrix for targeted studies of cell behavior and drug testing. The tumor models discussed included those for breast cancer, glioblastoma, fibrosarcoma, gastric cancer, hepatocellular carcinoma, and melanoma. The review concludes with a discussion of future prospects for developing more robust and high-throughput HA-based models to more accurately mimic the tumor microenvironment and improve drug testing. Impact Statement This review underscores the transformative potential of hyaluronic acid (HA)-based hydrogels in developing advanced tumor models. By exploring HA's dual role as a critical extracellular matrix component and a regulator of cancer cell dynamics, we highlight its unique contributions to replicating the tumor microenvironment. The recent advancements in HA-based models provide new opportunities for more accurate studies of cancer cell behavior and drug responses. Looking ahead, these innovations pave the way for high-throughput, biomimetic platforms that could revolutionize drug testing and accelerate the discovery of effective cancer therapies.</p>","PeriodicalId":23154,"journal":{"name":"Tissue engineering. Part C, Methods","volume":" ","pages":"452-499"},"PeriodicalIF":2.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering. Part C, Methods","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.TEC.2024.0271","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Although routine two-dimensional (2D) cell culture techniques have advanced basic cancer research owing to their simplicity, cost-effectiveness, and reproducibility, they have limitations that necessitate the development of advanced three-dimensional (3D) tumor models that better recapitulate the tumor microenvironment. Various biomaterials have been used to establish these 3D models, enabling the study of cancer cell behavior within different matrices. Hyaluronic acid (HA), a key component of the extracellular matrix (ECM) in tumor tissues, has been widely studied and employed in the development of multiple cancer models. This review first examines the role of HA in tumors, including its function as an ECM component and regulator of signaling pathways that affect tumor progression. It then explores HA-based models for various cancers, focusing on HA as a central component of the 3D matrix and its mobilization within the matrix for targeted studies of cell behavior and drug testing. The tumor models discussed included those for breast cancer, glioblastoma, fibrosarcoma, gastric cancer, hepatocellular carcinoma, and melanoma. The review concludes with a discussion of future prospects for developing more robust and high-throughput HA-based models to more accurately mimic the tumor microenvironment and improve drug testing. Impact Statement This review underscores the transformative potential of hyaluronic acid (HA)-based hydrogels in developing advanced tumor models. By exploring HA's dual role as a critical extracellular matrix component and a regulator of cancer cell dynamics, we highlight its unique contributions to replicating the tumor microenvironment. The recent advancements in HA-based models provide new opportunities for more accurate studies of cancer cell behavior and drug responses. Looking ahead, these innovations pave the way for high-throughput, biomimetic platforms that could revolutionize drug testing and accelerate the discovery of effective cancer therapies.
虽然常规的二维细胞培养技术因其简便、成本效益高和可重复性强而推动了基础癌症研究,但它们也有局限性,因此有必要开发先进的三维肿瘤模型,以更好地再现肿瘤微环境。各种生物材料已被用于建立这些三维模型,以便研究癌细胞在不同基质中的行为。透明质酸(HA)是肿瘤组织细胞外基质的关键成分,已被广泛研究并用于多种癌症模型的开发。本综述首先探讨了HA在肿瘤中的作用,包括其作为细胞外基质(ECM)成分和影响肿瘤进展的信号通路调节器的功能。然后探讨了基于 HA 的各种癌症模型,重点关注作为三维基质核心成分的 HA 及其在基质内的调动,以便对细胞行为和药物测试进行有针对性的研究。讨论的肿瘤模型包括乳腺癌、胶质母细胞瘤、纤维肉瘤、胃癌、肝细胞癌和黑色素瘤。综述最后讨论了开发更强大和高通量的基于 HA 的模型的未来前景,以更准确地模拟肿瘤微环境并改进药物测试。
期刊介绍:
Tissue Engineering is the preeminent, biomedical journal advancing the field with cutting-edge research and applications that repair or regenerate portions or whole tissues. This multidisciplinary journal brings together the principles of engineering and life sciences in the creation of artificial tissues and regenerative medicine. Tissue Engineering is divided into three parts, providing a central forum for groundbreaking scientific research and developments of clinical applications from leading experts in the field that will enable the functional replacement of tissues.
Tissue Engineering Methods (Part C) presents innovative tools and assays in scaffold development, stem cells and biologically active molecules to advance the field and to support clinical translation. Part C publishes monthly.