{"title":"miR-24-3p inhibits lipid synthesis and progesterone secretion in chicken granulosa cells via ERK1/2 signaling pathway","authors":"","doi":"10.1016/j.theriogenology.2024.09.027","DOIUrl":null,"url":null,"abstract":"<div><div>Normal follicular development is the basis for ovulation in poultry. Our previous sequencing analysis revealed a high expression of miR-24-3p in chicken follicles from degenerated ovaries, suggesting that miR-24-3p may modulate follicular development. Hence, this study investigated the specific mechanisms of miR-24-3p in regulating chicken follicular development. The results revealed that the proliferation, lipid synthesis, and progesterone secretion were significantly inhibited after miR-24-3p overexpression in chicken granulosa cells, vice versa by miR-24-3p knockdown. Dual-specificity phosphatase 16 (<strong><em>DUSP16</em></strong>) and thousand and one amino acid kinase 1 (<strong><em>TAOK1</em></strong>) were identified as potential target genes of miR-24-3p. Further validation revealed that knockdown of <em>DUSP16</em> and <em>TAOK1</em> suppressed proliferation, lipid synthesis, and progesterone secretion in chicken granulosa cells. Moreover, we observed that miR-24-3p, along with knockdown of <em>DUSP16</em> and <em>TAOK1</em>, increased the phosphorylation levels of extracellular signal-regulated kinases 1 and 2 (<strong>ERK1/2</strong>). Our previous study proved that activation of ERK1/2 inhibited lipid synthesis and progesterone secretion of chicken granulosa cells. In summary, we demonstrated that miR-24-3p targeting <em>DUSP16</em> and <em>TAOK1</em> disrupts lipid synthesis and progesterone secretion via ERK1/2 signaling pathway in chicken granulosa cells in vitro. These results may provide a new theoretical basis for resolving miRNAs regulation on reproductive performance of chickens.</div></div>","PeriodicalId":23131,"journal":{"name":"Theriogenology","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theriogenology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093691X24003960","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REPRODUCTIVE BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Normal follicular development is the basis for ovulation in poultry. Our previous sequencing analysis revealed a high expression of miR-24-3p in chicken follicles from degenerated ovaries, suggesting that miR-24-3p may modulate follicular development. Hence, this study investigated the specific mechanisms of miR-24-3p in regulating chicken follicular development. The results revealed that the proliferation, lipid synthesis, and progesterone secretion were significantly inhibited after miR-24-3p overexpression in chicken granulosa cells, vice versa by miR-24-3p knockdown. Dual-specificity phosphatase 16 (DUSP16) and thousand and one amino acid kinase 1 (TAOK1) were identified as potential target genes of miR-24-3p. Further validation revealed that knockdown of DUSP16 and TAOK1 suppressed proliferation, lipid synthesis, and progesterone secretion in chicken granulosa cells. Moreover, we observed that miR-24-3p, along with knockdown of DUSP16 and TAOK1, increased the phosphorylation levels of extracellular signal-regulated kinases 1 and 2 (ERK1/2). Our previous study proved that activation of ERK1/2 inhibited lipid synthesis and progesterone secretion of chicken granulosa cells. In summary, we demonstrated that miR-24-3p targeting DUSP16 and TAOK1 disrupts lipid synthesis and progesterone secretion via ERK1/2 signaling pathway in chicken granulosa cells in vitro. These results may provide a new theoretical basis for resolving miRNAs regulation on reproductive performance of chickens.
期刊介绍:
Theriogenology provides an international forum for researchers, clinicians, and industry professionals in animal reproductive biology. This acclaimed journal publishes articles on a wide range of topics in reproductive and developmental biology, of domestic mammal, avian, and aquatic species as well as wild species which are the object of veterinary care in research or conservation programs.