Clinical and device-based predictors of improved experience of activities of daily living after a multidisciplinary inpatient treatment for people with Parkinson's disease: a cohort study.
Judith Oppermann, Vera Tschentscher, Julius Welzel, Johanna Geritz, Clint Hansen, Ralf Gold, Walter Maetzler, Raphael Scherbaum, Lars Tönges
{"title":"Clinical and device-based predictors of improved experience of activities of daily living after a multidisciplinary inpatient treatment for people with Parkinson's disease: a cohort study.","authors":"Judith Oppermann, Vera Tschentscher, Julius Welzel, Johanna Geritz, Clint Hansen, Ralf Gold, Walter Maetzler, Raphael Scherbaum, Lars Tönges","doi":"10.1177/17562864241277157","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The inpatient Parkinson's Disease Multimodal Complex Treatment (PD-MCT) is an important therapeutical approach to improving gait and activities of daily living (ADL) of people with PD (PwP). Wearable device-based parameters (DBP) are new options for specific gait analyses toward individualized treatments.</p><p><strong>Objectives: </strong>We sought to identify predictors of perceived ADL benefit taking clinical scores and DBP into account. Additionally, we analyzed DBP and clinical scores before and after PD-MCT.</p><p><strong>Design: </strong>Exploratory observational cohort study.</p><p><strong>Methods: </strong>Clinical scores and DBP of 56 PwP (mean age: 66.3 years, median Hoehn and Yahr (H&Y) stage: 2.5) were examined at the start and the end of a 14-day inpatient PD-MCT in a German University Medical Center. Participants performed four straight walking tasks under single- and dual-task conditions for gait analyses. Additionally, clinical scores of motor and nonmotor functions and quality of life (QoL) were assessed. Using dichotomized data of change in Movement Disorders Society Unified Parkinson's Disease Rating Scale Part II (MDS-UPDRS II) as a dependent variable and clinical and DBP as independent variables, a binomial logistic regression model was implemented.</p><p><strong>Results: </strong>Young age, high perceived ADL impairment at baseline, high dexterity skills, and a steady gait were significant predictors of ADL benefit after PD-MCT. DBP like gait speed, number of steps, step time, stance time, and double limb support time were improved after PD-MCT. In addition, motor functions (e.g., MDS-UPDRS III and IV), QoL, perceived ADL (MDS-UPDRS II), and experience of nonmotor functions (MDS-UPDRS I) improved significantly.</p><p><strong>Conclusion: </strong>The logistic regression model identified a group of PwP who had the most probable perceived ADL benefit after PD-MCT. Additionally, gait improved toward a faster and more dynamic gait. Using wearable technology in context of PD-MCT is promising to offer more personalized therapeutical concepts.</p><p><strong>Trial registration: </strong>German Clinical Trial Register, https://drks.de; DRKS00020948 number, 30 March 2020, retrospectively registered.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11425784/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/17562864241277157","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The inpatient Parkinson's Disease Multimodal Complex Treatment (PD-MCT) is an important therapeutical approach to improving gait and activities of daily living (ADL) of people with PD (PwP). Wearable device-based parameters (DBP) are new options for specific gait analyses toward individualized treatments.
Objectives: We sought to identify predictors of perceived ADL benefit taking clinical scores and DBP into account. Additionally, we analyzed DBP and clinical scores before and after PD-MCT.
Design: Exploratory observational cohort study.
Methods: Clinical scores and DBP of 56 PwP (mean age: 66.3 years, median Hoehn and Yahr (H&Y) stage: 2.5) were examined at the start and the end of a 14-day inpatient PD-MCT in a German University Medical Center. Participants performed four straight walking tasks under single- and dual-task conditions for gait analyses. Additionally, clinical scores of motor and nonmotor functions and quality of life (QoL) were assessed. Using dichotomized data of change in Movement Disorders Society Unified Parkinson's Disease Rating Scale Part II (MDS-UPDRS II) as a dependent variable and clinical and DBP as independent variables, a binomial logistic regression model was implemented.
Results: Young age, high perceived ADL impairment at baseline, high dexterity skills, and a steady gait were significant predictors of ADL benefit after PD-MCT. DBP like gait speed, number of steps, step time, stance time, and double limb support time were improved after PD-MCT. In addition, motor functions (e.g., MDS-UPDRS III and IV), QoL, perceived ADL (MDS-UPDRS II), and experience of nonmotor functions (MDS-UPDRS I) improved significantly.
Conclusion: The logistic regression model identified a group of PwP who had the most probable perceived ADL benefit after PD-MCT. Additionally, gait improved toward a faster and more dynamic gait. Using wearable technology in context of PD-MCT is promising to offer more personalized therapeutical concepts.
Trial registration: German Clinical Trial Register, https://drks.de; DRKS00020948 number, 30 March 2020, retrospectively registered.
期刊介绍:
ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.