Naifeng He, Zhong Yang, Chunguang Bu, Xiaoliang Fan, Jiying Wu, Yaoyu Sui, Wenqiang Que
{"title":"Learning Autonomous Navigation in Unmapped and Unknown Environments.","authors":"Naifeng He, Zhong Yang, Chunguang Bu, Xiaoliang Fan, Jiying Wu, Yaoyu Sui, Wenqiang Que","doi":"10.3390/s24185925","DOIUrl":null,"url":null,"abstract":"<p><p>Autonomous decision-making is a hallmark of intelligent mobile robots and an essential element of autonomous navigation. The challenge is to enable mobile robots to complete autonomous navigation tasks in environments with mapless or low-precision maps, relying solely on low-precision sensors. To address this, we have proposed an innovative autonomous navigation algorithm called PEEMEF-DARC. This algorithm consists of three parts: Double Actors Regularized Critics (DARC), a priority-based excellence experience data collection mechanism, and a multi-source experience fusion strategy mechanism. The algorithm is capable of performing autonomous navigation tasks in unmapped and unknown environments without maps or prior knowledge. This algorithm enables autonomous navigation in unmapped and unknown environments without the need for maps or prior knowledge. Our enhanced algorithm improves the agent's exploration capabilities and utilizes regularization to mitigate the overestimation of state-action values. Additionally, the priority-based excellence experience data collection module and the multi-source experience fusion strategy module significantly reduce training time. Experimental results demonstrate that the proposed method excels in navigating the unmapped and unknown, achieving effective navigation without relying on maps or precise localization.</p>","PeriodicalId":21698,"journal":{"name":"Sensors","volume":"24 18","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11435623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.3390/s24185925","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autonomous decision-making is a hallmark of intelligent mobile robots and an essential element of autonomous navigation. The challenge is to enable mobile robots to complete autonomous navigation tasks in environments with mapless or low-precision maps, relying solely on low-precision sensors. To address this, we have proposed an innovative autonomous navigation algorithm called PEEMEF-DARC. This algorithm consists of three parts: Double Actors Regularized Critics (DARC), a priority-based excellence experience data collection mechanism, and a multi-source experience fusion strategy mechanism. The algorithm is capable of performing autonomous navigation tasks in unmapped and unknown environments without maps or prior knowledge. This algorithm enables autonomous navigation in unmapped and unknown environments without the need for maps or prior knowledge. Our enhanced algorithm improves the agent's exploration capabilities and utilizes regularization to mitigate the overestimation of state-action values. Additionally, the priority-based excellence experience data collection module and the multi-source experience fusion strategy module significantly reduce training time. Experimental results demonstrate that the proposed method excels in navigating the unmapped and unknown, achieving effective navigation without relying on maps or precise localization.
期刊介绍:
Sensors (ISSN 1424-8220) provides an advanced forum for the science and technology of sensors and biosensors. It publishes reviews (including comprehensive reviews on the complete sensors products), regular research papers and short notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.