Predicting implantation by using dual AI system incorporating three-dimensional blastocyst image and conventional embryo evaluation parameters-A pilot study.

IF 2.7 3区 医学 Q2 OBSTETRICS & GYNECOLOGY
Reproductive Medicine and Biology Pub Date : 2024-09-30 eCollection Date: 2024-01-01 DOI:10.1002/rmb2.12612
Yasunari Miyagi, Toshihiro Habara, Rei Hirata, Nobuyoshi Hayashi
{"title":"Predicting implantation by using dual AI system incorporating three-dimensional blastocyst image and conventional embryo evaluation parameters-A pilot study.","authors":"Yasunari Miyagi, Toshihiro Habara, Rei Hirata, Nobuyoshi Hayashi","doi":"10.1002/rmb2.12612","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the usefulness of an original dual artificial intelligence (AI) system, in which the first AI system eliminates the background of sliced tomographic blastocyst images, then the second AI system predicts implantation success using three-dimensional (3D) reconstructed images of the sequential images and conventional embryo evaluation parameters (CEE) such as maternal age.</p><p><strong>Methods: </strong>Patients (from June 2022 to July 2023) could opt out and there was additional information on the Web site of the clinic. Implantation and non-implantation cases numbered 458 and 519, respectively. A total of 10 747 tomographic images of the blastocyst in a time-lapse incubator system with the CEE were obtained.</p><p><strong>Results: </strong>The statistic values by the dual AI system were 0.774 ± 0.033 (mean ± standard error) for area under the characteristic curve, 0.727 for sensitivity, 0.719 for specificity, 0.727 for predictive value of positive test, 0.719 predictive value of negative test, and 0.723 for accuracy, respectively.</p><p><strong>Conclusions: </strong>The usefulness of the dual AI system in predicting implantation of blastocyst in handling 3D data with conventional embryo evaluation information was demonstrated. This system may be a feasible option in clinical practice.</p>","PeriodicalId":21116,"journal":{"name":"Reproductive Medicine and Biology","volume":"23 1","pages":"e12612"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442056/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reproductive Medicine and Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/rmb2.12612","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: To investigate the usefulness of an original dual artificial intelligence (AI) system, in which the first AI system eliminates the background of sliced tomographic blastocyst images, then the second AI system predicts implantation success using three-dimensional (3D) reconstructed images of the sequential images and conventional embryo evaluation parameters (CEE) such as maternal age.

Methods: Patients (from June 2022 to July 2023) could opt out and there was additional information on the Web site of the clinic. Implantation and non-implantation cases numbered 458 and 519, respectively. A total of 10 747 tomographic images of the blastocyst in a time-lapse incubator system with the CEE were obtained.

Results: The statistic values by the dual AI system were 0.774 ± 0.033 (mean ± standard error) for area under the characteristic curve, 0.727 for sensitivity, 0.719 for specificity, 0.727 for predictive value of positive test, 0.719 predictive value of negative test, and 0.723 for accuracy, respectively.

Conclusions: The usefulness of the dual AI system in predicting implantation of blastocyst in handling 3D data with conventional embryo evaluation information was demonstrated. This system may be a feasible option in clinical practice.

使用结合三维囊胚图像和传统胚胎评估参数的双人工智能系统预测植入--一项试验研究。
目的:研究独创的双人工智能(AI)系统的实用性,其中第一个人工智能系统消除了切片断层囊胚图像的背景,然后第二个人工智能系统利用序列图像的三维(3D)重建图像和常规胚胎评估参数(CEE)(如母体年龄)预测植入成功率:患者(2022 年 6 月至 2023 年 7 月)可以选择退出,诊所的网站上也提供了其他信息。移植和非移植病例分别为 458 例和 519 例。在使用 CEE 的延时培养箱系统中,共获得了 10 747 张囊胚断层图像:结果:双 AI 系统的统计值分别为特征曲线下面积 0.774 ± 0.033(平均值 ± 标准误差)、灵敏度 0.727、特异度 0.719、阳性预测值 0.727、阴性预测值 0.719 和准确度 0.723:在处理三维数据和传统胚胎评估信息时,双人工智能系统在预测囊胚植入方面的实用性得到了证实。该系统在临床实践中可能是一个可行的选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
5.90%
发文量
53
审稿时长
20 weeks
期刊介绍: Reproductive Medicine and Biology (RMB) is the official English journal of the Japan Society for Reproductive Medicine, the Japan Society of Fertilization and Implantation, the Japan Society of Andrology, and publishes original research articles that report new findings or concepts in all aspects of reproductive phenomena in all kinds of mammals. Papers in any of the following fields will be considered: andrology, endocrinology, oncology, immunology, genetics, function of gonads and genital tracts, erectile dysfunction, gametogenesis, function of accessory sex organs, fertilization, embryogenesis, embryo manipulation, pregnancy, implantation, ontogenesis, infectious disease, contraception, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信