Classification of the L-, H-mode, and plasma-free state: Convolutional neural networks and variational autoencoders on the edge reflectometer for KSTAR.

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Boseong Kim, Seong-Heon Seo, Dong Keun Oh, Yong-Su Na
{"title":"Classification of the L-, H-mode, and plasma-free state: Convolutional neural networks and variational autoencoders on the edge reflectometer for KSTAR.","authors":"Boseong Kim, Seong-Heon Seo, Dong Keun Oh, Yong-Su Na","doi":"10.1063/5.0219478","DOIUrl":null,"url":null,"abstract":"<p><p>Classifying and monitoring the L-, H-mode, and plasma-free state are essential for the stable operational control of tokamaks. Edge reflectometry measures plasma density profiles, but the large volume of data and complexity in reconstruction pose significant challenges. There is a need for efficient methods to analyze complex reflectometer data in real-time, which can be addressed using advanced computational techniques. Here, we show that machine learning (ML) techniques can classify discharge states using raw signal data from an edge reflectometer installed on the Korea Superconducting Tokamak Advanced Research. The deep convolutional neural network models achieved classification accuracy of up to 99% when using 2D spectrogram inputs, demonstrating a significant improvement over 1D raw signal inputs. Additionally, the variational autoencoder model effectively clustered the discharge states in the latent space without any label information, further validating the model's capability to classify discharge states. These results suggest that the ML model can effectively handle the complexity of reflectometer data and accurately classify plasma discharge states. This approach not only facilitates real-time diagnosis but also reduces the need for manual data processing.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0219478","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Classifying and monitoring the L-, H-mode, and plasma-free state are essential for the stable operational control of tokamaks. Edge reflectometry measures plasma density profiles, but the large volume of data and complexity in reconstruction pose significant challenges. There is a need for efficient methods to analyze complex reflectometer data in real-time, which can be addressed using advanced computational techniques. Here, we show that machine learning (ML) techniques can classify discharge states using raw signal data from an edge reflectometer installed on the Korea Superconducting Tokamak Advanced Research. The deep convolutional neural network models achieved classification accuracy of up to 99% when using 2D spectrogram inputs, demonstrating a significant improvement over 1D raw signal inputs. Additionally, the variational autoencoder model effectively clustered the discharge states in the latent space without any label information, further validating the model's capability to classify discharge states. These results suggest that the ML model can effectively handle the complexity of reflectometer data and accurately classify plasma discharge states. This approach not only facilitates real-time diagnosis but also reduces the need for manual data processing.

L 模式、H 模式和无等离子状态的分类:KSTAR 边缘反射仪上的卷积神经网络和变异自动编码器。
L 模式、H 模式和无等离子体状态的分类和监测对于托卡马克的稳定运行控制至关重要。边缘反射测量法可测量等离子体密度剖面,但数据量大、重建复杂,这给我们带来了巨大挑战。我们需要高效的方法来实时分析复杂的反射仪数据,这可以利用先进的计算技术来解决。在这里,我们展示了机器学习(ML)技术可以利用安装在韩国超导托卡马克先进研究装置上的边缘反射仪的原始信号数据对放电状态进行分类。在使用二维频谱图输入时,深度卷积神经网络模型的分类准确率高达 99%,比一维原始信号输入有显著提高。此外,变异自动编码器模型在没有任何标签信息的情况下有效地将放电状态聚类到潜在空间中,进一步验证了该模型对放电状态进行分类的能力。这些结果表明,ML 模型可以有效地处理反射仪数据的复杂性,并准确地对等离子体放电状态进行分类。这种方法不仅有助于实时诊断,还能减少人工数据处理的需要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信