Temperature stabilization of a lab space at 10 mK-level over a day.

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Dylan Fife, Dong-Chel Shin, Vivishek Sudhir
{"title":"Temperature stabilization of a lab space at 10 mK-level over a day.","authors":"Dylan Fife, Dong-Chel Shin, Vivishek Sudhir","doi":"10.1063/5.0213133","DOIUrl":null,"url":null,"abstract":"<p><p>Temperature fluctuations over long time scales (≳ 1 h) are an insidious problem for precision measurements. In optical laboratories, the primary effect of temperature fluctuations is drifts in optical circuits over spatial scales of a few meters and temporal scales extending beyond a few minutes. We present a lab-scale environment temperature control system approaching 10 mK-level temperature instability across a lab for integration times above an hour and extending to a day. This is achieved by passive isolation of the laboratory space from the building walls using a circulating air gap and an active control system feeding back to heating coils at the outlet of the laboratory's Heating-Ventilation-Air-Conditioning (HVAC) unit. These techniques together result in 20 dB suppression of the temperature power spectrum across the lab at 10-4 Hz-approaching the limit set by statistical coherence of the temperature field-and 10 mK Allan deviation around 15 °C after an hour of averaging, which is an order of magnitude better than any previous report for a full laboratory.</p>","PeriodicalId":21111,"journal":{"name":"Review of Scientific Instruments","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Review of Scientific Instruments","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0213133","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Temperature fluctuations over long time scales (≳ 1 h) are an insidious problem for precision measurements. In optical laboratories, the primary effect of temperature fluctuations is drifts in optical circuits over spatial scales of a few meters and temporal scales extending beyond a few minutes. We present a lab-scale environment temperature control system approaching 10 mK-level temperature instability across a lab for integration times above an hour and extending to a day. This is achieved by passive isolation of the laboratory space from the building walls using a circulating air gap and an active control system feeding back to heating coils at the outlet of the laboratory's Heating-Ventilation-Air-Conditioning (HVAC) unit. These techniques together result in 20 dB suppression of the temperature power spectrum across the lab at 10-4 Hz-approaching the limit set by statistical coherence of the temperature field-and 10 mK Allan deviation around 15 °C after an hour of averaging, which is an order of magnitude better than any previous report for a full laboratory.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Review of Scientific Instruments
Review of Scientific Instruments 工程技术-物理:应用
CiteScore
3.00
自引率
12.50%
发文量
758
审稿时长
2.6 months
期刊介绍: Review of Scientific Instruments, is committed to the publication of advances in scientific instruments, apparatuses, and techniques. RSI seeks to meet the needs of engineers and scientists in physics, chemistry, and the life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信