Nan Sheng, Weiwei Lin, Jingjing Lin, Yuan Feng, Yanchao Wang, Xueling He, Yuanyuan He, Ruichao Liang, Zhen Li, Jiehua Li, Feng Luo, Hong Tan
{"title":"Cross-linking manipulation of waterborne biodegradable polyurethane for constructing mechanically adaptable tissue engineering scaffolds.","authors":"Nan Sheng, Weiwei Lin, Jingjing Lin, Yuan Feng, Yanchao Wang, Xueling He, Yuanyuan He, Ruichao Liang, Zhen Li, Jiehua Li, Feng Luo, Hong Tan","doi":"10.1093/rb/rbae111","DOIUrl":null,"url":null,"abstract":"<p><p>Mechanical adaptation of tissue engineering scaffolds is critically important since natural tissue regeneration is highly regulated by mechanical signals. Herein, we report a facile and convenient strategy to tune the modulus of waterborne biodegradable polyurethanes (WBPU) via cross-linking manipulation of phase separation and water infiltration for constructing mechanically adaptable tissue engineering scaffolds. Amorphous aliphatic polycarbonate and trifunctional trimethylolpropane were introduced to polycaprolactone-based WBPUs to interrupt interchain hydrogen bonds in the polymer segments and suppress microphase separation, inhibiting the crystallization process and enhancing covalent cross-linking. Intriguingly, as the crosslinking density of WBPU increases and the extent of microphase separation decreases, the material exhibits a surprisingly soft modulus and enhanced water infiltration. Based on this strategy, we constructed WBPU scaffolds with a tunable modulus to adapt various cells for tissue regeneration and regulate the immune response. As a representative application of brain tissue regeneration model in vivo, it was demonstrated that the mechanically adaptable WBPU scaffolds can guide the migration and differentiation of endogenous neural progenitor cells into mature neurons and neuronal neurites and regulate immunostimulation with low inflammation. Therefore, the proposed strategy of tuning the modulus of WBPU can inspire the development of novel mechanically adaptable biomaterials, which has very broad application value.</p>","PeriodicalId":20929,"journal":{"name":"Regenerative Biomaterials","volume":"11 ","pages":"rbae111"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11422185/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Regenerative Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/rb/rbae111","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanical adaptation of tissue engineering scaffolds is critically important since natural tissue regeneration is highly regulated by mechanical signals. Herein, we report a facile and convenient strategy to tune the modulus of waterborne biodegradable polyurethanes (WBPU) via cross-linking manipulation of phase separation and water infiltration for constructing mechanically adaptable tissue engineering scaffolds. Amorphous aliphatic polycarbonate and trifunctional trimethylolpropane were introduced to polycaprolactone-based WBPUs to interrupt interchain hydrogen bonds in the polymer segments and suppress microphase separation, inhibiting the crystallization process and enhancing covalent cross-linking. Intriguingly, as the crosslinking density of WBPU increases and the extent of microphase separation decreases, the material exhibits a surprisingly soft modulus and enhanced water infiltration. Based on this strategy, we constructed WBPU scaffolds with a tunable modulus to adapt various cells for tissue regeneration and regulate the immune response. As a representative application of brain tissue regeneration model in vivo, it was demonstrated that the mechanically adaptable WBPU scaffolds can guide the migration and differentiation of endogenous neural progenitor cells into mature neurons and neuronal neurites and regulate immunostimulation with low inflammation. Therefore, the proposed strategy of tuning the modulus of WBPU can inspire the development of novel mechanically adaptable biomaterials, which has very broad application value.
期刊介绍:
Regenerative Biomaterials is an international, interdisciplinary, peer-reviewed journal publishing the latest advances in biomaterials and regenerative medicine. The journal provides a forum for the publication of original research papers, reviews, clinical case reports, and commentaries on the topics relevant to the development of advanced regenerative biomaterials concerning novel regenerative technologies and therapeutic approaches for the regeneration and repair of damaged tissues and organs. The interactions of biomaterials with cells and tissue, especially with stem cells, will be of particular focus.