A New Threat to Limber Pine (Pinus flexilis) Restoration in Alberta and Beyond: First Documentation of a Cronartium ribicola Race (vcr4) Virulent to Cr4-Controlled Major Gene Resistance.
Jun-Jun Liu, Richard A Sniezko, Sydney Houston, Genoa Alger, Jodie Krakowski, Anna W Schoettle, Robert Sissons, Arezoo Zamany, Holly Williams, Benjamin Rancourt, Angelia Kegley
{"title":"A New Threat to Limber Pine (<i>Pinus flexilis</i>) Restoration in Alberta and Beyond: First Documentation of a <i>Cronartium ribicola</i> Race (<i>vcr4</i>) Virulent to <i>Cr4-</i>Controlled Major Gene Resistance.","authors":"Jun-Jun Liu, Richard A Sniezko, Sydney Houston, Genoa Alger, Jodie Krakowski, Anna W Schoettle, Robert Sissons, Arezoo Zamany, Holly Williams, Benjamin Rancourt, Angelia Kegley","doi":"10.1094/PHYTO-04-24-0129-R","DOIUrl":null,"url":null,"abstract":"<p><p>The coevolution of virulence reduces the effectiveness of host resistance to pathogens, posing a direct threat to forest species and their key ecosystem functions. This is a threat to limber pine (<i>Pinus flexilis</i>), an endangered species in Canada due to rapid decline mainly driven by white pine blister rust caused by <i>Cronartium ribicola</i>. We present the first report of a new, virulent race of <i>C</i>. <i>ribicola</i> (designated <i>vcr4</i>) that overcomes limber pine major gene (<i>Cr4</i>) resistance (MGR). Field surveys found that three parental trees (pf-503, pf-508, and pf-2015-0070) were cankered with white pine blister rust in Alberta, but their progenies showed MGR-related phenotypic segregation postinoculation with an avirulent race of <i>C</i>. <i>ribicola</i> (<i>Avcr4</i>). Genotyping of their progenies using <i>Cr4</i>-linked DNA markers and a genome-wide association study provided additional support that these cankered parental trees had <i>Cr4</i>-controlled MGR. To confirm the presence of <i>vcr4</i>, aeciospores were collected from the cankered pf-503 tree to inoculate resistant seedlings that had survived prior inoculation using the <i>Avcr4</i> race, as well as seedlings of two U.S. seed parents, one previously confirmed with MGR (<i>Cr4</i>) and one without MGR, respectively. All inoculated seedlings showed clear stem symptoms, confirming that the virulent race is <i>vcr4</i>. These results provide insights into the evolution of <i>C</i>. <i>ribicola</i> virulence and reinforce caution on deployment of <i>Cr4-</i>controlled MGR. The information will be useful for designing a breeding program for durable resistance by layering both R genes with quantitative trait loci for resistance to white pine blister rust in North America.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":"44-53"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-04-24-0129-R","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The coevolution of virulence reduces the effectiveness of host resistance to pathogens, posing a direct threat to forest species and their key ecosystem functions. This is a threat to limber pine (Pinus flexilis), an endangered species in Canada due to rapid decline mainly driven by white pine blister rust caused by Cronartium ribicola. We present the first report of a new, virulent race of C. ribicola (designated vcr4) that overcomes limber pine major gene (Cr4) resistance (MGR). Field surveys found that three parental trees (pf-503, pf-508, and pf-2015-0070) were cankered with white pine blister rust in Alberta, but their progenies showed MGR-related phenotypic segregation postinoculation with an avirulent race of C. ribicola (Avcr4). Genotyping of their progenies using Cr4-linked DNA markers and a genome-wide association study provided additional support that these cankered parental trees had Cr4-controlled MGR. To confirm the presence of vcr4, aeciospores were collected from the cankered pf-503 tree to inoculate resistant seedlings that had survived prior inoculation using the Avcr4 race, as well as seedlings of two U.S. seed parents, one previously confirmed with MGR (Cr4) and one without MGR, respectively. All inoculated seedlings showed clear stem symptoms, confirming that the virulent race is vcr4. These results provide insights into the evolution of C. ribicola virulence and reinforce caution on deployment of Cr4-controlled MGR. The information will be useful for designing a breeding program for durable resistance by layering both R genes with quantitative trait loci for resistance to white pine blister rust in North America.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.