{"title":"The module consisting of transcription factor WRKY14 and thaumatin-like protein TLP25 is involved in winter adaptation in Ammopiptanthus mongolicus.","authors":"Qi Liu, Weiying Zeng, Lanting Qi, Xuting Li, Yijun Zhou, Fei Gao","doi":"10.1111/ppl.14560","DOIUrl":null,"url":null,"abstract":"<p><p>Thaumatin-like proteins (TLPs) are conserved proteins involved in the defense and stress responses of plants. Previous studies showed that several TLPs were accumulated in leaf apoplast in Ammopiptanthus mongolicus in winter, indicating that TLPs might be related to the adaptation to winter climate in A. mongolicus. To investigate the roles of TLPs in winter adaptation, we first analyzed the expression pattern of TLP genes in A. mongolicus and then focused on the biological function and regulation pathway of AmTLP25 gene. Several TLP genes, including AmTLP25, were upregulated during winter and in response to both cold and osmotic stress. Overexpression of the AmTLP25 gene led to an increased tolerance of transgenic Arabidopsis to freezing and osmotic stress. Furthermore, the elevated AmWRKY14 transcription factor during winter activated AmTLP25 gene expression by specifically binding to its promoter. It is speculated that the AmWRKY14 - AmTLP25 module contributes to the adaptation to temperate winter climate in A. mongolicus. Our research advances the current understanding of the biological function and regulatory pathway of TLP genes and provides valuable information for understanding the molecular mechanism of temperate evergreen broad-leaved plants adapting to winter climate.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 5","pages":"e14560"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14560","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Thaumatin-like proteins (TLPs) are conserved proteins involved in the defense and stress responses of plants. Previous studies showed that several TLPs were accumulated in leaf apoplast in Ammopiptanthus mongolicus in winter, indicating that TLPs might be related to the adaptation to winter climate in A. mongolicus. To investigate the roles of TLPs in winter adaptation, we first analyzed the expression pattern of TLP genes in A. mongolicus and then focused on the biological function and regulation pathway of AmTLP25 gene. Several TLP genes, including AmTLP25, were upregulated during winter and in response to both cold and osmotic stress. Overexpression of the AmTLP25 gene led to an increased tolerance of transgenic Arabidopsis to freezing and osmotic stress. Furthermore, the elevated AmWRKY14 transcription factor during winter activated AmTLP25 gene expression by specifically binding to its promoter. It is speculated that the AmWRKY14 - AmTLP25 module contributes to the adaptation to temperate winter climate in A. mongolicus. Our research advances the current understanding of the biological function and regulatory pathway of TLP genes and provides valuable information for understanding the molecular mechanism of temperate evergreen broad-leaved plants adapting to winter climate.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.