Joseph Carter, Joshua Hoffman, Braxton Fjeldsted, Grant Ogilvie, Douglas D Cook
{"title":"Measurement of maize stalk shear moduli.","authors":"Joseph Carter, Joshua Hoffman, Braxton Fjeldsted, Grant Ogilvie, Douglas D Cook","doi":"10.1186/s13007-024-01264-6","DOIUrl":null,"url":null,"abstract":"<p><p>Maize is the most grown feed crop in the United States. Due to wind storms and other factors, 5% of maize falls over annually. The longitudinal shear modulus of maize stalk tissues is currently unreported and may have a significant influence on stalk failure. To better understand the causes of this phenomenon, maize stalk material properties need to be measured so that they can be used as material constants in computational models that provide detailed analysis of maize stalk failure. This study reports longitudinal shear modulus of maize stalk tissue through repeated torsion testing of dry and fully mature maize stalks. Measurements were focused on the two tissues found in maize stalks: the hard outer rind and the soft inner pith. Uncertainty analysis and comparison of multiple methodologies indicated that all measurements are subject to low error and bias. The results of this study will allow researchers to better understand maize stalk failure modes through computational modeling. This will allow researchers to prevent annual maize loss through later studies. This study also provides a methodology that could be used or adapted in the measurement of tissues from other plants such as sorghum, sugarcane, etc.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"152"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441149/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01264-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Maize is the most grown feed crop in the United States. Due to wind storms and other factors, 5% of maize falls over annually. The longitudinal shear modulus of maize stalk tissues is currently unreported and may have a significant influence on stalk failure. To better understand the causes of this phenomenon, maize stalk material properties need to be measured so that they can be used as material constants in computational models that provide detailed analysis of maize stalk failure. This study reports longitudinal shear modulus of maize stalk tissue through repeated torsion testing of dry and fully mature maize stalks. Measurements were focused on the two tissues found in maize stalks: the hard outer rind and the soft inner pith. Uncertainty analysis and comparison of multiple methodologies indicated that all measurements are subject to low error and bias. The results of this study will allow researchers to better understand maize stalk failure modes through computational modeling. This will allow researchers to prevent annual maize loss through later studies. This study also provides a methodology that could be used or adapted in the measurement of tissues from other plants such as sorghum, sugarcane, etc.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.