{"title":"Effects of cell culture time and cytokines on migration of dental pulp stem cell-derived chondrogenic cells in collagen hydrogels.","authors":"Li Yao, Nikol Flynn, Pranita Kaphle","doi":"10.14814/phy2.70063","DOIUrl":null,"url":null,"abstract":"<p><p>The transplantation of collagen hydrogels encapsulating human dental pulp stem cell (DPSC)-derived chondrogenic cells is potentially a novel approach for the regeneration of degenerated nucleus pulposus (NP) and cartilage. Grafted cell migration allows cells to disperse in the hydrogels and the treated tissue from the grafted location. We previously reported the cell migration in type I and type II hydrogels. It is important to explore further how cell culture time affect the cell motility. In this study, we observed the decreased motility of DPSC-derived chondrogenic cells after culturing for 2 weeks compared with cells cultured for 2 days in these gels. The Alamarblue assay showed the cell proliferation during the two-week cell culture period. The findings suggest that the transitions of cell motility and proliferation during the longer culture time. The result indicates that the early culture stage is an optimal time for cell transplantation. In a degenerated disc, the expression of IL-1β and TNFα increased significantly compared with healthy tissue and therefore may affect grafted cell migration. The incorporation of IL-1β and TNFα into the collagen hydrogels decreased cell motility. The study indicates that the control of IL-1β and TNFα production may help to maintain cell motility after transplantation.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"12 18","pages":"e70063"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427086/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The transplantation of collagen hydrogels encapsulating human dental pulp stem cell (DPSC)-derived chondrogenic cells is potentially a novel approach for the regeneration of degenerated nucleus pulposus (NP) and cartilage. Grafted cell migration allows cells to disperse in the hydrogels and the treated tissue from the grafted location. We previously reported the cell migration in type I and type II hydrogels. It is important to explore further how cell culture time affect the cell motility. In this study, we observed the decreased motility of DPSC-derived chondrogenic cells after culturing for 2 weeks compared with cells cultured for 2 days in these gels. The Alamarblue assay showed the cell proliferation during the two-week cell culture period. The findings suggest that the transitions of cell motility and proliferation during the longer culture time. The result indicates that the early culture stage is an optimal time for cell transplantation. In a degenerated disc, the expression of IL-1β and TNFα increased significantly compared with healthy tissue and therefore may affect grafted cell migration. The incorporation of IL-1β and TNFα into the collagen hydrogels decreased cell motility. The study indicates that the control of IL-1β and TNFα production may help to maintain cell motility after transplantation.
期刊介绍:
Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.