Development of an Automated Triage System for Longstanding Dizzy Patients Using Artificial Intelligence.

IF 1.8 Q2 OTORHINOLARYNGOLOGY
OTO Open Pub Date : 2024-09-27 eCollection Date: 2024-07-01 DOI:10.1002/oto2.70006
Santiago Romero-Brufau, Robert J Macielak, Jeffrey P Staab, Scott D Z Eggers, Colin L W Driscoll, Neil T Shepard, Douglas J Totten, Sabrina M Albertson, Kalyan S Pasupathy, Devin L McCaslin
{"title":"Development of an Automated Triage System for Longstanding Dizzy Patients Using Artificial Intelligence.","authors":"Santiago Romero-Brufau, Robert J Macielak, Jeffrey P Staab, Scott D Z Eggers, Colin L W Driscoll, Neil T Shepard, Douglas J Totten, Sabrina M Albertson, Kalyan S Pasupathy, Devin L McCaslin","doi":"10.1002/oto2.70006","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>To report the first steps of a project to automate and optimize scheduling of multidisciplinary consultations for patients with longstanding dizziness utilizing artificial intelligence.</p><p><strong>Study design: </strong>Retrospective case review.</p><p><strong>Setting: </strong>Quaternary referral center.</p><p><strong>Methods: </strong>A previsit self-report questionnaire was developed to query patients about their complaints of longstanding dizziness. We convened an expert panel of clinicians to review diagnostic outcomes for 98 patients and used a consensus approach to retrospectively determine what would have been the ideal appointments based on the patient's final diagnoses. These results were then compared retrospectively to the actual patient schedules. From these data, a machine learning algorithm was trained and validated to automate the triage process.</p><p><strong>Results: </strong>Compared with the ideal itineraries determined retrospectively with our expert panel, visits scheduled by the triage clinicians showed a mean concordance of 70%, and our machine learning algorithm triage showed a mean concordance of 79%.</p><p><strong>Conclusion: </strong>Manual triage by clinicians for dizzy patients is a time-consuming and costly process. The formulated first-generation automated triage algorithm achieved similar results to clinicians when triaging dizzy patients using data obtained directly from an online previsit questionnaire.</p>","PeriodicalId":19697,"journal":{"name":"OTO Open","volume":"8 3","pages":"e70006"},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427795/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"OTO Open","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oto2.70006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"OTORHINOLARYNGOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: To report the first steps of a project to automate and optimize scheduling of multidisciplinary consultations for patients with longstanding dizziness utilizing artificial intelligence.

Study design: Retrospective case review.

Setting: Quaternary referral center.

Methods: A previsit self-report questionnaire was developed to query patients about their complaints of longstanding dizziness. We convened an expert panel of clinicians to review diagnostic outcomes for 98 patients and used a consensus approach to retrospectively determine what would have been the ideal appointments based on the patient's final diagnoses. These results were then compared retrospectively to the actual patient schedules. From these data, a machine learning algorithm was trained and validated to automate the triage process.

Results: Compared with the ideal itineraries determined retrospectively with our expert panel, visits scheduled by the triage clinicians showed a mean concordance of 70%, and our machine learning algorithm triage showed a mean concordance of 79%.

Conclusion: Manual triage by clinicians for dizzy patients is a time-consuming and costly process. The formulated first-generation automated triage algorithm achieved similar results to clinicians when triaging dizzy patients using data obtained directly from an online previsit questionnaire.

利用人工智能开发长期头晕患者自动分诊系统。
目的:报告利用人工智能对长期眩晕患者的多学科会诊进行自动化和优化调度项目的第一步:报告利用人工智能对长期头晕患者的多学科会诊进行自动化和优化调度的项目的第一步:研究设计:回顾性病例回顾:研究设计:回顾性病例回顾:我们开发了一份就诊前自我报告问卷,以询问患者对长期头晕的主诉。我们召集了一个由临床医生组成的专家小组,对 98 名患者的诊断结果进行回顾性分析,并根据患者的最终诊断结果,采用协商一致的方法回顾性地确定理想的诊疗方案。然后将这些结果与患者的实际日程安排进行回顾性比较。根据这些数据,对机器学习算法进行了训练和验证,以实现分诊过程的自动化:结果:与我们的专家小组回顾性确定的理想行程相比,分诊临床医生安排的就诊时间平均吻合度为 70%,而我们的机器学习算法分诊平均吻合度为 79%:结论:临床医生对头晕患者进行人工分诊既费时又费钱。制定的第一代自动分流算法在使用直接从在线就诊前调查问卷中获取的数据对头晕患者进行分流时,取得了与临床医生相似的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
OTO Open
OTO Open Medicine-Surgery
CiteScore
2.70
自引率
0.00%
发文量
115
审稿时长
15 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信