Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease.

IF 4.7 2区 医学 Q1 GENETICS & HEREDITY
Norris E Igbineweka, Jack J W A van Loon
{"title":"Gene-environmental influence of space and microgravity on red blood cells with sickle cell disease.","authors":"Norris E Igbineweka, Jack J W A van Loon","doi":"10.1038/s41525-024-00427-7","DOIUrl":null,"url":null,"abstract":"<p><p>A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"44"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11442622/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-024-00427-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

A fundamental question in human biology and for hematological disease is how do complex gene-environment interactions lead to individual disease outcome? This is no less the case for sickle cell disease (SCD), a monogenic disorder of Mendelian inheritance, both clinical course, severity, and treatment response, is variable amongst affected individuals. New insight and discovery often lie between the intersection of seemingly disparate disciplines. Recently, opportunities for space medicine have flourished and have offered a new paradigm for study. Two recent Nature papers have shown that hemolysis and oxidative stress play key mechanistic roles in erythrocyte pathogenesis during spaceflight. This paper reviews existing genetic and environmental modifiers of the sickle cell disease phenotype. It reviews evidence for erythrocyte pathology in microgravity environments and demonstrates why this may be relevant for the unique gene-environment interaction of the SCD phenotype. It also introduces the hematology and scientific community to methodological tools for evaluation in space and microgravity research. The increasing understanding of space biology may yield insight into gene-environment influences and new treatment paradigms in SCD and other hematological disease phenotypes.

太空和微重力对镰状细胞病红细胞的基因环境影响
人类生物学和血液病的一个基本问题是,复杂的基因-环境相互作用是如何导致个体疾病结局的?镰状细胞病(SCD)也是如此,它是一种孟德尔遗传的单基因疾病,临床病程、严重程度和治疗反应在不同患者之间存在差异。新的见解和发现往往存在于看似不同学科的交叉点之间。最近,空间医学蓬勃发展,为研究提供了新的范例。最近的两篇《自然》(Nature)论文显示,溶血和氧化应激在太空飞行期间的红细胞发病机制中起着关键的机理作用。本文回顾了镰状细胞病表型的现有遗传和环境改变因素。它回顾了微重力环境中红细胞病理学的证据,并说明了为什么这可能与 SCD 表型的独特基因-环境相互作用有关。它还向血液学和科学界介绍了用于太空和微重力研究评估的方法工具。随着人们对太空生物学认识的加深,可能会对 SCD 和其他血液病表型的基因-环境影响因素和新的治疗范例有更深入的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Genomic Medicine
NPJ Genomic Medicine Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍: npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine. The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信