Machine Learning Approach to Support Taxonomic Discrimination of Mayflies Species Based on Morphologic Data.

IF 1.4 3区 农林科学 Q2 ENTOMOLOGY
Neotropical Entomology Pub Date : 2024-12-01 Epub Date: 2024-09-25 DOI:10.1007/s13744-024-01200-2
Jhon Faber Marulanda Lopez, Walter Bueno de Brito Neto, Ricardo Dos Santos Ferreira
{"title":"Machine Learning Approach to Support Taxonomic Discrimination of Mayflies Species Based on Morphologic Data.","authors":"Jhon Faber Marulanda Lopez, Walter Bueno de Brito Neto, Ricardo Dos Santos Ferreira","doi":"10.1007/s13744-024-01200-2","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) and machine learning (ML) offer objective solutions in the elaboration of taxonomic keys, such as the processing of large numbers of samples, aiding in the species identification, and optimizing the time required for this process. We utilized ML to study the morphological data of eight species of Americabaetis Kluge 1992, a diverse genus in South American freshwater environments. Decision trees were employed, examining specimens from the Museu de Entomologia da Universidade Federal de Viçosa (UFVB/Brazil) and literature data. Eleven morphological traits of taxonomic importance from the literature, including frontal keel, shape of the mouthparts, and abdominal color pattern, were analyzed. The decision tree obtained with the Gini algorithm effectively differentiates eight species (40% of the known species), using only eight morphological characters. Our analysis revealed distinct groups within Americabaetis alphus Lugo-Ortiz and McCafferty 1996a, based on variations in abdominal tracheae pigmentation. This study introduces a novel approach, integrating AI techniques, biological collections, and literature data for aid in the Americabaetis species identification. It provides a valuable tool for taxonomic research on contemporary and extinct mayflies.</p>","PeriodicalId":19071,"journal":{"name":"Neotropical Entomology","volume":" ","pages":"1196-1203"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neotropical Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s13744-024-01200-2","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) and machine learning (ML) offer objective solutions in the elaboration of taxonomic keys, such as the processing of large numbers of samples, aiding in the species identification, and optimizing the time required for this process. We utilized ML to study the morphological data of eight species of Americabaetis Kluge 1992, a diverse genus in South American freshwater environments. Decision trees were employed, examining specimens from the Museu de Entomologia da Universidade Federal de Viçosa (UFVB/Brazil) and literature data. Eleven morphological traits of taxonomic importance from the literature, including frontal keel, shape of the mouthparts, and abdominal color pattern, were analyzed. The decision tree obtained with the Gini algorithm effectively differentiates eight species (40% of the known species), using only eight morphological characters. Our analysis revealed distinct groups within Americabaetis alphus Lugo-Ortiz and McCafferty 1996a, based on variations in abdominal tracheae pigmentation. This study introduces a novel approach, integrating AI techniques, biological collections, and literature data for aid in the Americabaetis species identification. It provides a valuable tool for taxonomic research on contemporary and extinct mayflies.

根据形态学数据支持蜉蝣物种分类判别的机器学习方法
人工智能(AI)和机器学习(ML)为编制分类钥匙提供了客观的解决方案,例如处理大量样本、帮助物种鉴定以及优化这一过程所需的时间。我们利用 ML 研究了 Americabaetis Kluge 1992 的 8 个物种的形态数据,这是南美洲淡水环境中的一个多样性属。我们使用决策树研究了巴西维索萨联邦大学昆虫博物馆(UFVB/Brazil)的标本和文献数据。分析了文献中 11 个在分类学上具有重要意义的形态特征,包括额龙骨、口器形状和腹部颜色图案。利用吉尼算法得到的决策树仅用八个形态特征就有效地区分了八个物种(占已知物种的 40%)。根据腹部气管色素的变化,我们的分析揭示了 Americabaetis alphus Lugo-Ortiz 和 McCafferty 1996a 中的不同类群。这项研究引入了一种新方法,将人工智能技术、生物收集和文献数据整合在一起,以帮助鉴定 Americabaetis 的物种。它为当代蜉蝣和已灭绝蜉蝣的分类研究提供了宝贵的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neotropical Entomology
Neotropical Entomology 生物-昆虫学
CiteScore
3.30
自引率
5.60%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Neotropical Entomology is a bimonthly journal, edited by the Sociedade Entomológica do Brasil (Entomological Society of Brazil) that publishes original articles produced by Brazilian and international experts in several subspecialties of entomology. These include bionomics, systematics, morphology, physiology, behavior, ecology, biological control, crop protection and acarology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信