N Chaize, X Baudry, P-H Jouneau, E Gautier, J-L Rouvière, Y Deblock, J Xu, M Berthe, C Barbot, B Grandidier, L Desplanque, H Sellier, P Ballet
{"title":"Selective area epitaxy of in-plane HgTe nanostructures on CdTe(001) substrate.","authors":"N Chaize, X Baudry, P-H Jouneau, E Gautier, J-L Rouvière, Y Deblock, J Xu, M Berthe, C Barbot, B Grandidier, L Desplanque, H Sellier, P Ballet","doi":"10.1088/1361-6528/ad7ff4","DOIUrl":null,"url":null,"abstract":"<p><p>Semiconductor nanowires (NWs) are believed to play a crucial role for future applications in electronics, spintronics and quantum technologies. A potential candidate is HgTe but its sensitivity to nanofabrication processes restrain its development. A way to circumvent this obstacle is the selective area growth technique. Here, in-plane HgTe nanostructures are grown thanks to selective area molecular beam epitaxy on a semi-insulating CdTe substrate covered with a patterned SiO<sub>2</sub>mask. The shape of these nanostructures is defined by the in-plane orientation of the mask aperture along the <110>, <11¯0>, or <100> direction, the deposited thickness, and the growth temperature (GT). Several micron long in-plane NWs can be achieved as well as more complex nanostructures such as networks, diamond structures or rings. A good selectivity is achieved with very little parasitic growth on the mask even for a GT as low as 140 °C and growth rate up to 0.5 monolayer per second. For <110> oriented NWs, the center of the nanostructure exhibits a trapezoidal shape with {111}B facets and two grains on the sides, while <11¯0> oriented NWs show {111}A facets with adatoms accumulation on the sides of the top surface. Transmission electron microscopy observations reveal a continuous epitaxial relation between the CdTe substrate and the HgTe NW. Measurements of the resistance with four-point scanning tunneling microscopy indicates a good electrical homogeneity along the main NW axis and a thermally activated transport. This growth method paves the way toward the fabrication of complex HgTe-based nanostructures for electronic transport measurements.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/ad7ff4","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Semiconductor nanowires (NWs) are believed to play a crucial role for future applications in electronics, spintronics and quantum technologies. A potential candidate is HgTe but its sensitivity to nanofabrication processes restrain its development. A way to circumvent this obstacle is the selective area growth technique. Here, in-plane HgTe nanostructures are grown thanks to selective area molecular beam epitaxy on a semi-insulating CdTe substrate covered with a patterned SiO2mask. The shape of these nanostructures is defined by the in-plane orientation of the mask aperture along the <110>, <11¯0>, or <100> direction, the deposited thickness, and the growth temperature (GT). Several micron long in-plane NWs can be achieved as well as more complex nanostructures such as networks, diamond structures or rings. A good selectivity is achieved with very little parasitic growth on the mask even for a GT as low as 140 °C and growth rate up to 0.5 monolayer per second. For <110> oriented NWs, the center of the nanostructure exhibits a trapezoidal shape with {111}B facets and two grains on the sides, while <11¯0> oriented NWs show {111}A facets with adatoms accumulation on the sides of the top surface. Transmission electron microscopy observations reveal a continuous epitaxial relation between the CdTe substrate and the HgTe NW. Measurements of the resistance with four-point scanning tunneling microscopy indicates a good electrical homogeneity along the main NW axis and a thermally activated transport. This growth method paves the way toward the fabrication of complex HgTe-based nanostructures for electronic transport measurements.
期刊介绍:
The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.