Heme oxygenase/carbon monoxide system and development of the heart.

IF 3 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Medical Gas Research Pub Date : 2025-03-01 Epub Date: 2024-09-25 DOI:10.4103/mgr.MEDGASRES-D-24-00031
Vicki L Mahan
{"title":"Heme oxygenase/carbon monoxide system and development of the heart.","authors":"Vicki L Mahan","doi":"10.4103/mgr.MEDGASRES-D-24-00031","DOIUrl":null,"url":null,"abstract":"<p><p>Progressive differentiation controlled by intercellular signaling between pharyngeal mesoderm, foregut endoderm, and neural crest-derived mesenchyme is required for normal embryonic and fetal development. Gasotransmitters (criteria: 1) a small gas molecule; 2) freely permeable across membranes; 3) endogenously and enzymatically produced and its production regulated; 4) well-defined and specific functions at physiologically relevant concentrations; 5) functions can be mimicked by exogenously applied counterpart; and 6) cellular effects may or may not be second messenger-mediated, but should have specific cellular and molecular targets) are integral to gametogenesis and subsequent embryogenesis, fetal development, and normal heart maturation. Important for in utero development, the heme oxygenase/carbon monoxide system is expressed during gametogenesis, by the placenta, during embryonic development, and by the fetus. Complex sequences of biochemical pathways result in the progressive maturation of the human heart in utero . The resulting myocardial architecture, consisting of working myocardium, coronary arteries and veins, epicardium, valves and cardiac skeleton, endocardial lining, and cardiac conduction system, determines function. Oxygen metabolism in normal and maldeveloping hearts, which develop under reduced and fluctuating oxygen concentrations, is poorly understood. \"Normal\" hypoxia is critical for heart formation, but \"abnormal\" hypoxia in utero affects cardiogenesis. The heme oxygenase/carbon monoxide system is important for in utero cardiac development, and other factors also result in alterations of the heme oxygenase/carbon monoxide system during in utero cardiac development. This review will address the role of the heme oxygenase/carbon monoxide system during cardiac development in embryo and fetal development.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"10-22"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515065/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Progressive differentiation controlled by intercellular signaling between pharyngeal mesoderm, foregut endoderm, and neural crest-derived mesenchyme is required for normal embryonic and fetal development. Gasotransmitters (criteria: 1) a small gas molecule; 2) freely permeable across membranes; 3) endogenously and enzymatically produced and its production regulated; 4) well-defined and specific functions at physiologically relevant concentrations; 5) functions can be mimicked by exogenously applied counterpart; and 6) cellular effects may or may not be second messenger-mediated, but should have specific cellular and molecular targets) are integral to gametogenesis and subsequent embryogenesis, fetal development, and normal heart maturation. Important for in utero development, the heme oxygenase/carbon monoxide system is expressed during gametogenesis, by the placenta, during embryonic development, and by the fetus. Complex sequences of biochemical pathways result in the progressive maturation of the human heart in utero . The resulting myocardial architecture, consisting of working myocardium, coronary arteries and veins, epicardium, valves and cardiac skeleton, endocardial lining, and cardiac conduction system, determines function. Oxygen metabolism in normal and maldeveloping hearts, which develop under reduced and fluctuating oxygen concentrations, is poorly understood. "Normal" hypoxia is critical for heart formation, but "abnormal" hypoxia in utero affects cardiogenesis. The heme oxygenase/carbon monoxide system is important for in utero cardiac development, and other factors also result in alterations of the heme oxygenase/carbon monoxide system during in utero cardiac development. This review will address the role of the heme oxygenase/carbon monoxide system during cardiac development in embryo and fetal development.

血红素含氧酶/一氧化碳系统与心脏的发育
咽中胚层、前肠内胚层和神经嵴衍生间充质之间的细胞间信号控制的渐进分化是正常胚胎和胎儿发育所必需的。气体传递介质(标准:1)小气体分子;2)可自由透过膜;3)内源和酶促产生,其产生受调控;4)在生理相关浓度下具有明确和特定的功能;5)功能可被外源应用的对应物模拟;以及 6)细胞效应可能是也可能不是第二信使介导的,但应具有特定的细胞和分子靶标)是配子发生、随后的胚胎发生、胎儿发育和正常心脏成熟不可或缺的因素。血红素加氧酶/一氧化碳系统对子宫内发育非常重要,在配子发生过程中、胎盘、胚胎发育过程中和胎儿体内都有表达。一系列复杂的生化途径导致人类心脏在子宫内逐渐成熟。由此形成的心肌结构由工作心肌、冠状动脉和静脉、心外膜、瓣膜和心脏骨架、心内膜和心脏传导系统组成,决定了心脏的功能。正常和发育不良的心脏是在氧浓度降低和波动的情况下发育的,因此人们对这些心脏的氧代谢知之甚少。"正常 "缺氧对心脏的形成至关重要,但子宫内 "异常 "缺氧会影响心脏的生成。血红素含氧酶/一氧化碳系统对子宫内心脏的发育非常重要,其他因素也会导致子宫内心脏发育过程中血红素含氧酶/一氧化碳系统的改变。本综述将探讨血红素加氧酶/一氧化碳系统在胚胎和胎儿心脏发育过程中的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Medical Gas Research
Medical Gas Research MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
5.10
自引率
13.80%
发文量
35
期刊介绍: Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信