Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice.
{"title":"Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice.","authors":"Xinhe Wu, Yanan Shao, Yongmei Chen, Wei Zhang, Shirong Dai, Yajun Wu, Xiaoge Jiang, Xinjian Song, Hao Shen","doi":"10.4103/mgr.MEDGASRES-D-24-00044","DOIUrl":null,"url":null,"abstract":"<p><p>Oxygen therapy after acute lung injury can regulate the inflammatory response and reduce lung tissue injury. However, the optimal exposure pressure, duration, and frequency of oxygen therapy for acute lung injury remain unclear. In the present study, after intraperitoneal injection of lipopolysaccharide in ICR mice, 1.0 atmosphere absolute (ATA) pure oxygen and 2.0 ATA hyperbaric oxygen treatment for 1 hour decreased the levels of proinflammatory factors (interleukin-1beta and interleukin-6) in peripheral blood and lung tissues. However, only 2.0 ATA hyperbaric oxygen increased the mRNA levels of anti-inflammatory factors (interleukin-10 and arginase-1) in lung tissue; 3.0 ATA hyperbaric oxygen treatment had no significant effect. We also observed that at 2.0 ATA, the anti-inflammatory effect of a single exposure to hyperbaric oxygen for 3 hours was greater than that of a single exposure to hyperbaric oxygen for 1 hour. The protective effect of two exposures for 1.5 hours was similar to that of a single exposure for 3 hours. These results suggest that hyperbaric oxygen alleviates lipopolysaccharide-induced acute lung injury by regulating the expression of inflammatory factors in an acute lung injury model and that appropriately increasing the duration and frequency of hyperbaric oxygen exposure has a better tissue-protective effect on lipopolysaccharide-induced acute lung injury. These results could guide the development of more effective oxygen therapy regimens for acute lung injury patients.</p>","PeriodicalId":18559,"journal":{"name":"Medical Gas Research","volume":" ","pages":"171-179"},"PeriodicalIF":3.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Gas Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/mgr.MEDGASRES-D-24-00044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oxygen therapy after acute lung injury can regulate the inflammatory response and reduce lung tissue injury. However, the optimal exposure pressure, duration, and frequency of oxygen therapy for acute lung injury remain unclear. In the present study, after intraperitoneal injection of lipopolysaccharide in ICR mice, 1.0 atmosphere absolute (ATA) pure oxygen and 2.0 ATA hyperbaric oxygen treatment for 1 hour decreased the levels of proinflammatory factors (interleukin-1beta and interleukin-6) in peripheral blood and lung tissues. However, only 2.0 ATA hyperbaric oxygen increased the mRNA levels of anti-inflammatory factors (interleukin-10 and arginase-1) in lung tissue; 3.0 ATA hyperbaric oxygen treatment had no significant effect. We also observed that at 2.0 ATA, the anti-inflammatory effect of a single exposure to hyperbaric oxygen for 3 hours was greater than that of a single exposure to hyperbaric oxygen for 1 hour. The protective effect of two exposures for 1.5 hours was similar to that of a single exposure for 3 hours. These results suggest that hyperbaric oxygen alleviates lipopolysaccharide-induced acute lung injury by regulating the expression of inflammatory factors in an acute lung injury model and that appropriately increasing the duration and frequency of hyperbaric oxygen exposure has a better tissue-protective effect on lipopolysaccharide-induced acute lung injury. These results could guide the development of more effective oxygen therapy regimens for acute lung injury patients.
期刊介绍:
Medical Gas Research is an open access journal which publishes basic, translational, and clinical research focusing on the neurobiology as well as multidisciplinary aspects of medical gas research and their applications to related disorders. The journal covers all areas of medical gas research, but also has several special sections. Authors can submit directly to these sections, whose peer-review process is overseen by our distinguished Section Editors: Inert gases - Edited by Xuejun Sun and Mark Coburn, Gasotransmitters - Edited by Atsunori Nakao and John Calvert, Oxygen and diving medicine - Edited by Daniel Rossignol and Ke Jian Liu, Anesthetic gases - Edited by Richard Applegate and Zhongcong Xie, Medical gas in other fields of biology - Edited by John Zhang. Medical gas is a large family including oxygen, hydrogen, carbon monoxide, carbon dioxide, nitrogen, xenon, hydrogen sulfide, nitrous oxide, carbon disulfide, argon, helium and other noble gases. These medical gases are used in multiple fields of clinical practice and basic science research including anesthesiology, hyperbaric oxygen medicine, diving medicine, internal medicine, emergency medicine, surgery, and many basic sciences disciplines such as physiology, pharmacology, biochemistry, microbiology and neurosciences. Due to the unique nature of medical gas practice, Medical Gas Research will serve as an information platform for educational and technological advances in the field of medical gas.