Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH.

IF 4.3 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Xiaofang Yan, Anqi Bu, Yanfei Yuan, Xin Zhang, Zhanglin Lin, Xiaofeng Yang
{"title":"Engineering quorum sensing-based genetic circuits enhances growth and productivity robustness of industrial E. coli at low pH.","authors":"Xiaofang Yan, Anqi Bu, Yanfei Yuan, Xin Zhang, Zhanglin Lin, Xiaofeng Yang","doi":"10.1186/s12934-024-02524-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner.</p><p><strong>Results: </strong>In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter P<sub>esaS</sub> and stepwise evaluation, we developed an optimal Esa-P<sub>BD</sub>(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8.</p><p><strong>Conclusions: </strong>This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"23 1","pages":"256"},"PeriodicalIF":4.3000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438209/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02524-9","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Microbial organisms hold significant potential for converting renewable substrates into valuable chemicals. Low pH fermentation in industrial settings offers key advantages, including reduced neutralizer usage and decreased wastewater generation, particularly in the production of amino acids and organic acids. Engineering acid-tolerant strains represents a viable strategy to enhance productivity in acidic environments. Synthetic biology provides dynamic regulatory tools, such as gene circuits, facilitating precise expression of acid resistance (AR) modules in a just-in-time and just-enough manner.

Results: In this study, we aimed to enhance the robustness and productivity of Escherichia coli, a workhorse for amino acid and organic acid production, in industrial fermentation under mild acidic conditions. We employed an Esa-type quorum sensing circuit to dynamically regulate the expression of an AR module (DsrA-Hfq) in a just-in-time and just-enough manner. Through careful engineering of the critical promoter PesaS and stepwise evaluation, we developed an optimal Esa-PBD(L) circuit that conferred upon an industrial E. coli strain SCEcL3 comparable lysine productivity and enhanced yield at pH 5.5 compared to the parent strain at pH 6.8.

Conclusions: This study exemplifies the practical application of gene circuits in industrial environments, which present challenges far beyond those of well-controlled laboratory conditions.

基于法定人数感应的基因电路工程可提高工业大肠杆菌在低 pH 值条件下的生长和生产稳健性。
背景:微生物具有将可再生底物转化为有价值化学品的巨大潜力。工业环境中的低 pH 值发酵具有一些关键优势,包括减少中和剂的使用和废水的产生,特别是在氨基酸和有机酸的生产中。工程化耐酸菌株是在酸性环境中提高生产率的可行策略。合成生物学提供了动态调控工具,如基因回路,有助于以适时、适度的方式精确表达耐酸(AR)模块:在这项研究中,我们的目标是在弱酸性条件下的工业发酵中,提高大肠埃希菌(氨基酸和有机酸生产的主力军)的稳健性和生产率。我们采用了一种 Esa 型法定量感应电路,以适时、适度的方式动态调节 AR 模块(DsrA-Hfq)的表达。通过对关键启动子 PesaS 的精心设计和逐步评估,我们开发出了一种最佳的 Esa-PBD(L) 电路,在 pH 值为 5.5 时,与 pH 值为 6.8 时的亲本菌株相比,它能赋予工业大肠杆菌菌株 SCEcL3 相当的赖氨酸生产率和更高的产量:这项研究体现了基因线路在工业环境中的实际应用,而工业环境所面临的挑战远远超出了那些控制良好的实验室条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Cell Factories
Microbial Cell Factories 工程技术-生物工程与应用微生物
CiteScore
9.30
自引率
4.70%
发文量
235
审稿时长
2.3 months
期刊介绍: Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology. The journal is divided into the following editorial sections: -Metabolic engineering -Synthetic biology -Whole-cell biocatalysis -Microbial regulations -Recombinant protein production/bioprocessing -Production of natural compounds -Systems biology of cell factories -Microbial production processes -Cell-free systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信