Ryoichi Takada, Ryosuke Takagi, Zhaohuan Mai, Atsushi Matsuoka, Hideto Matsuyama
{"title":"Practical Osmotic Agent for High-Degree Pharmaceutical Pre-Concentration by Organic Solvent Forward Osmosis.","authors":"Ryoichi Takada, Ryosuke Takagi, Zhaohuan Mai, Atsushi Matsuoka, Hideto Matsuyama","doi":"10.3390/membranes14090187","DOIUrl":null,"url":null,"abstract":"<p><p>Pre-concentration can reduce the total production costs in the pharmaceutical industry. Organic solvent forward osmosis (OSFO) is a suitable pre-concentration method because of its nonthermal nature, low capital cost, and potential for achieving high-degree concentrations. In a previous study, we first demonstrated a high-degree OSFO concentration. Sucrose octaacetate (SoA) in MeOH was concentrated to 52 wt% using polyethylene glycol (PEG)-400 as the osmotic agent, but the concentrated solution had a concentration of 17% PEG-400 because of the reverse solute flux. This result does not meet the typical purity standards required for pharmaceutical production, indicating the need to determine a suitable osmotic agent that can be used for practical purposes. This study proposes a practical osmotic agent for OSFO pre-concentration. First, osmotic agents were screened from a practical perspective. Polypropylene glycol (PPG)-400 was selected, owing to its low toxicity, good solubility, and low viscosity. Subsequently, the OSFO concentration was demonstrated using PPG-400 as the osmotic agent. SoA in MeOH was concentrated from 9.4 wt% to 48 wt%. The final feed solution contained only 0.04 wt% PPG-400. This result is the first demonstration of successful pharmaceutical pre-concentration using OSFO that satisfies the typical purity requirement in pharmaceutical production.</p>","PeriodicalId":18410,"journal":{"name":"Membranes","volume":"14 9","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11433671/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Membranes","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/membranes14090187","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Pre-concentration can reduce the total production costs in the pharmaceutical industry. Organic solvent forward osmosis (OSFO) is a suitable pre-concentration method because of its nonthermal nature, low capital cost, and potential for achieving high-degree concentrations. In a previous study, we first demonstrated a high-degree OSFO concentration. Sucrose octaacetate (SoA) in MeOH was concentrated to 52 wt% using polyethylene glycol (PEG)-400 as the osmotic agent, but the concentrated solution had a concentration of 17% PEG-400 because of the reverse solute flux. This result does not meet the typical purity standards required for pharmaceutical production, indicating the need to determine a suitable osmotic agent that can be used for practical purposes. This study proposes a practical osmotic agent for OSFO pre-concentration. First, osmotic agents were screened from a practical perspective. Polypropylene glycol (PPG)-400 was selected, owing to its low toxicity, good solubility, and low viscosity. Subsequently, the OSFO concentration was demonstrated using PPG-400 as the osmotic agent. SoA in MeOH was concentrated from 9.4 wt% to 48 wt%. The final feed solution contained only 0.04 wt% PPG-400. This result is the first demonstration of successful pharmaceutical pre-concentration using OSFO that satisfies the typical purity requirement in pharmaceutical production.
MembranesChemical Engineering-Filtration and Separation
CiteScore
6.10
自引率
16.70%
发文量
1071
审稿时长
11 weeks
期刊介绍:
Membranes (ISSN 2077-0375) is an international, peer-reviewed open access journal of separation science and technology. It publishes reviews, research articles, communications and technical notes. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. Full experimental and/or methodical details must be provided.