Chen Shen, Xianding Sun, Zhi Li, Ruobin Zhang, Junlan Huang, Kaiying Tang, Ting Wang, Yangli Xie, Lin Chen, Mao Nie
{"title":"Panda Rope Bridge Technique promoted Achilles tendon regeneration in a novel rat tendon defect model.","authors":"Chen Shen, Xianding Sun, Zhi Li, Ruobin Zhang, Junlan Huang, Kaiying Tang, Ting Wang, Yangli Xie, Lin Chen, Mao Nie","doi":"10.1002/ksa.12490","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This study aimed to determine whether the Achilles tendon tissue can undergo the pathological process of Achilles tendon regeneration after the Panda Rope Bridge Technique (PRBT).</p><p><strong>Methods: </strong>Rats (n = 120) that operated with Achilles tendon rupture were divided into three treatment groups: Defect group (D group), PRBT group and Defect + Fix group (DF group). The D group represented natural healing with no treatment, the PRBT group represented healing receiving PRBT treatment and the DF group represented healing through conservative treatment by ankle fixation. The morphological, histological and biomechanical properties of the defective Achilles tendon were assessed at 7, 10, 12, 14, 28 and 56 days postoperatively.</p><p><strong>Results: </strong>Compared to that observed in the other two groups, defected rat Achilles tendons that underwent PRBT recruited more cells earlier, eventually forming mature tendons, as revealed by histological analysis. PRBT also enabled defected tendons to regain stronger mechanical properties, thereby improving the prognosis. This improvement may be related to the earlier polarization of macrophages.</p><p><strong>Conclusion: </strong>By establishing and using a novel surgical model of Achilles tendon rupture in rats, most injured Achilles tendons can regenerate and regain normal histological properties, whereas tendons with other interventions formed fibrotic scar tissue. The strong regenerative capacity of tendon tissue enabled us to describe the pathological process of tendon regeneration after PRBT surgery in detail, which would aid in the treatment of tendon injuries. PRBT promotes Achilles tendon regeneration and has the potential to become a standard treatment.</p><p><strong>Level of evidence: </strong>Not applicable.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ksa.12490","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This study aimed to determine whether the Achilles tendon tissue can undergo the pathological process of Achilles tendon regeneration after the Panda Rope Bridge Technique (PRBT).
Methods: Rats (n = 120) that operated with Achilles tendon rupture were divided into three treatment groups: Defect group (D group), PRBT group and Defect + Fix group (DF group). The D group represented natural healing with no treatment, the PRBT group represented healing receiving PRBT treatment and the DF group represented healing through conservative treatment by ankle fixation. The morphological, histological and biomechanical properties of the defective Achilles tendon were assessed at 7, 10, 12, 14, 28 and 56 days postoperatively.
Results: Compared to that observed in the other two groups, defected rat Achilles tendons that underwent PRBT recruited more cells earlier, eventually forming mature tendons, as revealed by histological analysis. PRBT also enabled defected tendons to regain stronger mechanical properties, thereby improving the prognosis. This improvement may be related to the earlier polarization of macrophages.
Conclusion: By establishing and using a novel surgical model of Achilles tendon rupture in rats, most injured Achilles tendons can regenerate and regain normal histological properties, whereas tendons with other interventions formed fibrotic scar tissue. The strong regenerative capacity of tendon tissue enabled us to describe the pathological process of tendon regeneration after PRBT surgery in detail, which would aid in the treatment of tendon injuries. PRBT promotes Achilles tendon regeneration and has the potential to become a standard treatment.