{"title":"Anekomochi glutinous rice provides low postprandial glycemic response by enhanced insulin action via GLP-1 release and vagal afferents activation.","authors":"Kento Ohbayashi, Yudai Sugiyama, Taichi Nohmi, Kazusa Nishimura, Tetsuya Nakazaki, Yo-Ichiro Sato, Takehiro Masumura, Yusaku Iwasaki","doi":"10.1186/s12576-024-00940-5","DOIUrl":null,"url":null,"abstract":"<p><p>Glutinous rice (mochi rice), compared to non-glutinous rice (uruchi rice), exhibits a wide range of glycemic index (GI) values, from low to high. However, the underlying mechanisms behind the variation in GI values remain poorly understood. In this study, we aimed to identify rice cultivars with a low postprandial glycemic response and investigate the mechanisms, focusing on insulin and incretin hormones. We examined seven glutinous rice cultivars and three non-glutinous rice cultivars. We discovered that Anekomochi, a glutinous rice cultivar, has the lowest postprandial glycemic response. Anekomochi significantly enhanced glucagon-like peptide-1 (GLP-1) secretion while suppressing insulin secretion. These effects were completely blunted by inhibiting GLP-1 receptor signaling and denervating the common hepatic branch of vagal afferent nerves that are crucial for sensing intestinal GLP-1. Our findings demonstrate that Anekomochi markedly enhances insulin action via GLP-1 release and vagal afferent neural pathways, thereby leading to a lower postprandial glycemic response.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11428336/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-024-00940-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Glutinous rice (mochi rice), compared to non-glutinous rice (uruchi rice), exhibits a wide range of glycemic index (GI) values, from low to high. However, the underlying mechanisms behind the variation in GI values remain poorly understood. In this study, we aimed to identify rice cultivars with a low postprandial glycemic response and investigate the mechanisms, focusing on insulin and incretin hormones. We examined seven glutinous rice cultivars and three non-glutinous rice cultivars. We discovered that Anekomochi, a glutinous rice cultivar, has the lowest postprandial glycemic response. Anekomochi significantly enhanced glucagon-like peptide-1 (GLP-1) secretion while suppressing insulin secretion. These effects were completely blunted by inhibiting GLP-1 receptor signaling and denervating the common hepatic branch of vagal afferent nerves that are crucial for sensing intestinal GLP-1. Our findings demonstrate that Anekomochi markedly enhances insulin action via GLP-1 release and vagal afferent neural pathways, thereby leading to a lower postprandial glycemic response.