Toru Kawada, Hiromi Yamamoto, Masafumi Fukumitsu, Takuya Nishikawa, Hiroki Matsushita, Yuki Yoshida, Kei Sato, Hidetaka Morita, Joe Alexander, Keita Saku
{"title":"Acute effects of empagliflozin on open-loop baroreflex function and urine output in streptozotocin-induced type 1 diabetic rats.","authors":"Toru Kawada, Hiromi Yamamoto, Masafumi Fukumitsu, Takuya Nishikawa, Hiroki Matsushita, Yuki Yoshida, Kei Sato, Hidetaka Morita, Joe Alexander, Keita Saku","doi":"10.1186/s12576-024-00938-z","DOIUrl":null,"url":null,"abstract":"<p><p>Although sympathetic suppression is considered one of the mechanisms for cardioprotection afforded by sodium-glucose cotransporter 2 (SGLT2) inhibitors, whether SGLT2 inhibition acutely modifies sympathetic arterial pressure (AP) regulation remains unclear. We examined the acute effect of an SGLT2 inhibitor, empagliflozin (10 mg/kg), on open-loop baroreflex static characteristics in streptozotocin (STZ)-induced type 1 diabetic and control (CNT) rats (n = 9 each). Empagliflozin significantly increased urine flow [CNT: 25.5 (21.7-31.2) vs. 55.9 (51.0-64.5), STZ: 83.4 (53.7-91.7) vs. 121.2 (57.0-136.0) μL·min<sup>-1</sup>·kg<sup>-1</sup>, median (1st-3rd quartiles), P < 0.001 for empagliflozin and STZ]. Empagliflozin decreased the minimum sympathetic nerve activity (SNA) [CNT: 15.7 (6.8-18.4) vs. 10.5 (2.9-19.0), STZ: 36.9 (25.7-54.9) vs. 32.8 (15.1-37.5) %, P = 0.021 for empagliflozin and P = 0.003 for STZ], but did not significantly affect the peripheral arc characteristics assessed by the SNA-AP relationship. Despite the significant increase in urine flow and changes in several baroreflex parameters, empagliflozin preserved the overall sympathetic AP regulation in STZ-induced diabetic rats. The lack of a significant change in the peripheral arc may minimize reflex sympathetic activation, thereby enhancing a cardioprotective benefit of empagliflozin.</p>","PeriodicalId":16832,"journal":{"name":"Journal of Physiological Sciences","volume":"74 1","pages":"48"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physiological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12576-024-00938-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Although sympathetic suppression is considered one of the mechanisms for cardioprotection afforded by sodium-glucose cotransporter 2 (SGLT2) inhibitors, whether SGLT2 inhibition acutely modifies sympathetic arterial pressure (AP) regulation remains unclear. We examined the acute effect of an SGLT2 inhibitor, empagliflozin (10 mg/kg), on open-loop baroreflex static characteristics in streptozotocin (STZ)-induced type 1 diabetic and control (CNT) rats (n = 9 each). Empagliflozin significantly increased urine flow [CNT: 25.5 (21.7-31.2) vs. 55.9 (51.0-64.5), STZ: 83.4 (53.7-91.7) vs. 121.2 (57.0-136.0) μL·min-1·kg-1, median (1st-3rd quartiles), P < 0.001 for empagliflozin and STZ]. Empagliflozin decreased the minimum sympathetic nerve activity (SNA) [CNT: 15.7 (6.8-18.4) vs. 10.5 (2.9-19.0), STZ: 36.9 (25.7-54.9) vs. 32.8 (15.1-37.5) %, P = 0.021 for empagliflozin and P = 0.003 for STZ], but did not significantly affect the peripheral arc characteristics assessed by the SNA-AP relationship. Despite the significant increase in urine flow and changes in several baroreflex parameters, empagliflozin preserved the overall sympathetic AP regulation in STZ-induced diabetic rats. The lack of a significant change in the peripheral arc may minimize reflex sympathetic activation, thereby enhancing a cardioprotective benefit of empagliflozin.
期刊介绍:
The Journal of Physiological Sciences publishes peer-reviewed original papers, reviews, short communications, technical notes, and letters to the editor, based on the principles and theories of modern physiology and addressed to the international scientific community. All fields of physiology are covered, encompassing molecular, cellular and systems physiology. The emphasis is on human and vertebrate physiology, but comparative papers are also considered. The process of obtaining results must be ethically sound.
Fields covered:
Adaptation and environment
Autonomic nervous function
Biophysics
Cell sensors and signaling
Central nervous system and brain sciences
Endocrinology and metabolism
Excitable membranes and neural cell physiology
Exercise physiology
Gastrointestinal and kidney physiology
Heart and circulatory physiology
Molecular and cellular physiology
Muscle physiology
Physiome/systems biology
Respiration physiology
Senses.