{"title":"Effects of LED polarized and vortex light on growth and photosynthetic characteristics of pepper (Capsicum annuum L.)","authors":"","doi":"10.1016/j.jplph.2024.154360","DOIUrl":null,"url":null,"abstract":"<div><div>Most studies currently focus on traditional illuminant regulating plant growth, while less attention has been given to the LED internal luminescence. This study examined how polarized and vortex light affect the growth and photosynthetic traits of pepper plants, with LED light used as the control. The findings indicated that circular polarized light significantly increased the aboveground biomass of pepper. Additionally, both polarized and vortex light treatment significantly influenced the root development of pepper. In comparison to the control group, the chlorophyll content was highest under circular polarized light, while the Pn, Sc, Tr, and Ci values were highest under linear polarized light, and the enzyme activity of Rubisco was increased. Circular polarized light notably increased the activities of POD, CAT, and SOD, the activity of SOD reached its peak under the left vortex light. Moreover, the content of MDA was observed to be the lowest under linear and right vortex light treatments. The expressions of key genes for chlorophyll synthesis (<em>CaHEMA1</em> and <em>CaCAO</em>) and antioxidant enzyme synthesis (<em>CaPOD, CaSOD</em>, and <em>CaMDHAR</em>) were significantly altered under varying polarized light conditions, The latter genes, which play crucial roles in antioxidant enzyme activity, also showed significant variations in response to different polarized light treatments. In conclusion, polarized light significantly impacts the growth of pepper and is anticipated to be utilized for plant growth, setting the stage for future research in this area.</div></div>","PeriodicalId":16808,"journal":{"name":"Journal of plant physiology","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of plant physiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0176161724001913","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Most studies currently focus on traditional illuminant regulating plant growth, while less attention has been given to the LED internal luminescence. This study examined how polarized and vortex light affect the growth and photosynthetic traits of pepper plants, with LED light used as the control. The findings indicated that circular polarized light significantly increased the aboveground biomass of pepper. Additionally, both polarized and vortex light treatment significantly influenced the root development of pepper. In comparison to the control group, the chlorophyll content was highest under circular polarized light, while the Pn, Sc, Tr, and Ci values were highest under linear polarized light, and the enzyme activity of Rubisco was increased. Circular polarized light notably increased the activities of POD, CAT, and SOD, the activity of SOD reached its peak under the left vortex light. Moreover, the content of MDA was observed to be the lowest under linear and right vortex light treatments. The expressions of key genes for chlorophyll synthesis (CaHEMA1 and CaCAO) and antioxidant enzyme synthesis (CaPOD, CaSOD, and CaMDHAR) were significantly altered under varying polarized light conditions, The latter genes, which play crucial roles in antioxidant enzyme activity, also showed significant variations in response to different polarized light treatments. In conclusion, polarized light significantly impacts the growth of pepper and is anticipated to be utilized for plant growth, setting the stage for future research in this area.
期刊介绍:
The Journal of Plant Physiology is a broad-spectrum journal that welcomes high-quality submissions in all major areas of plant physiology, including plant biochemistry, functional biotechnology, computational and synthetic plant biology, growth and development, photosynthesis and respiration, transport and translocation, plant-microbe interactions, biotic and abiotic stress. Studies are welcome at all levels of integration ranging from molecules and cells to organisms and their environments and are expected to use state-of-the-art methodologies. Pure gene expression studies are not within the focus of our journal. To be considered for publication, papers must significantly contribute to the mechanistic understanding of physiological processes, and not be merely descriptive, or confirmatory of previous results. We encourage the submission of papers that explore the physiology of non-model as well as accepted model species and those that bridge basic and applied research. For instance, studies on agricultural plants that show new physiological mechanisms to improve agricultural efficiency are welcome. Studies performed under uncontrolled situations (e.g. field conditions) not providing mechanistic insight will not be considered for publication.
The Journal of Plant Physiology publishes several types of articles: Original Research Articles, Reviews, Perspectives Articles, and Short Communications. Reviews and Perspectives will be solicited by the Editors; unsolicited reviews are also welcome but only from authors with a strong track record in the field of the review. Original research papers comprise the majority of published contributions.