Interrelation of macroscopic mechanical properties and molecular scale thermal relaxation of biodegradable and non-biodegradable polymers.

IF 2.3 4区 物理与天体物理 Q3 PHYSICS, CONDENSED MATTER
Shipra Bhatt, Debjani Bagchi
{"title":"Interrelation of macroscopic mechanical properties and molecular scale thermal relaxation of biodegradable and non-biodegradable polymers.","authors":"Shipra Bhatt, Debjani Bagchi","doi":"10.1088/1361-648X/ad7faf","DOIUrl":null,"url":null,"abstract":"<p><p>Comparative analysis of macroscopic mechanical properties of a biodegradable polymer polypropylene carbonate (PPC) is carried out concerning two most commonly used, non-biodegradable synthetic polymers-high-density polyethylene (HDPE) and linear-low density polyethylene (LLDPE). Responses of the films of these polymers when subjected to mechanical and thermal stresses are analyzed. Response to tensile stress reveals the highest elongation at break (EB) in PPC films (396 ± 104 mm), compared to HDPE (26 ± 0.5 mm) and LLDPE (301 ± 143 mm), although the elastic modulus (YM) of PPC is around 50 ± 6 MPa, 3-fold lesser than LLDPE (YM = 153 ± 7 MPa) and 6-fold lesser than HDPE (YM = 305 ± 32 MPa). The plastic deformation response of PPC is intermediate to that of HDPE and LLDPE; initial strain softening is followed by strain hardening in LLDPE, a plateau region in PPC, and prolonged strain softening in HDPE. Crystalline domains in HDPE produce restriction on molecular motion. Crystallinity abruptly decreases by 70% in HDPE following a thermal quench, showing the possibility of free chain molecular mobility during plastic deformation. High correlation among Raman modes for all polymers reveals cooperative relaxation processes after thermal quench; C-C stretching modes and C-H bending, CH<sub>2</sub>wagging modes have Pearson's correlation coefficient 0.9. The integrated peak intensity and width of the C-C stretching Raman mode is 3-fold higher in PPC than HDPE after a thermal quench, showing enhanced molecular mobility and contributing modes in PPC. The peak width of this mode shows a strong negative correlation of -0.7 with the YM and a strong positive correlation of 0.6 with EB, showing that higher amorphicity leads to enhanced molecular mobility and EB at the cost of YM. This study reveals importance of molecular-scale response in governing the macroscopic properties of polymers.</p>","PeriodicalId":16776,"journal":{"name":"Journal of Physics: Condensed Matter","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics: Condensed Matter","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-648X/ad7faf","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

Comparative analysis of macroscopic mechanical properties of a biodegradable polymer polypropylene carbonate (PPC) is carried out concerning two most commonly used, non-biodegradable synthetic polymers-high-density polyethylene (HDPE) and linear-low density polyethylene (LLDPE). Responses of the films of these polymers when subjected to mechanical and thermal stresses are analyzed. Response to tensile stress reveals the highest elongation at break (EB) in PPC films (396 ± 104 mm), compared to HDPE (26 ± 0.5 mm) and LLDPE (301 ± 143 mm), although the elastic modulus (YM) of PPC is around 50 ± 6 MPa, 3-fold lesser than LLDPE (YM = 153 ± 7 MPa) and 6-fold lesser than HDPE (YM = 305 ± 32 MPa). The plastic deformation response of PPC is intermediate to that of HDPE and LLDPE; initial strain softening is followed by strain hardening in LLDPE, a plateau region in PPC, and prolonged strain softening in HDPE. Crystalline domains in HDPE produce restriction on molecular motion. Crystallinity abruptly decreases by 70% in HDPE following a thermal quench, showing the possibility of free chain molecular mobility during plastic deformation. High correlation among Raman modes for all polymers reveals cooperative relaxation processes after thermal quench; C-C stretching modes and C-H bending, CH2wagging modes have Pearson's correlation coefficient 0.9. The integrated peak intensity and width of the C-C stretching Raman mode is 3-fold higher in PPC than HDPE after a thermal quench, showing enhanced molecular mobility and contributing modes in PPC. The peak width of this mode shows a strong negative correlation of -0.7 with the YM and a strong positive correlation of 0.6 with EB, showing that higher amorphicity leads to enhanced molecular mobility and EB at the cost of YM. This study reveals importance of molecular-scale response in governing the macroscopic properties of polymers.

可生物降解和不可生物降解聚合物的宏观机械性能与分子尺度热松弛的相互关系。
本研究对生物可降解聚合物聚碳酸丙烯(PPC)与两种最常用的不可生物降解合成聚合物--高密度聚乙烯(HDPE)和线性低密度聚乙烯(LLDPE)--的宏观机械性能进行了比较分析。分析了这些聚合物的薄膜在受到机械和热应力时的反应。与高密度聚乙烯(26 美元/平方毫米)和线性低密度聚乙烯(301 美元/平方毫米)相比,PPC 薄膜(396 美元/平方毫米,104 毫米)对拉伸应力的响应显示出最高的断裂伸长率(EB),尽管 PPC 的弹性模量(YM)约为 50 美元/平方毫米,比线性低密度聚乙烯(YM = 153 美元/平方毫米,7 兆帕)低 3 倍,比高密度聚乙烯(YM = 305 美元/平方毫米,32 兆帕)低 6 倍。PPC 的塑性变形响应介于 HDPE 和 LLDPE 之间;在 LLDPE 中,初始应变软化之后是应变硬化,在 PPC 中是高原区,而在 HDPE 中则是长时间的应变软化。高密度聚乙烯中的结晶畴对分子运动产生限制。热淬火后,高密度聚乙烯中的结晶度突然降低了 70%,这表明在塑性变形过程中存在自由链分子移动的可能性。所有聚合物拉曼模式之间的高度相关性揭示了热淬火后的协同弛豫过程;C-C 拉伸模式和 C-H 弯曲、CH$_2$摆动模式的皮尔逊相关系数为 0.9。热淬火后,PPC 中 C-C 伸展拉曼模式的综合峰强度和峰宽度是 HDPE 的 3 倍,这表明 PPC 中的分子流动性和贡献模式得到了增强。该模式的峰宽与 YM 呈强负相关(-0.7),而与 EB 呈强正相关(0.6),这表明较高的非晶性导致分子流动性和 EB 增强,而 YM 则是代价。这项研究揭示了分子尺度响应在管理聚合物宏观特性方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physics: Condensed Matter
Journal of Physics: Condensed Matter 物理-物理:凝聚态物理
CiteScore
5.30
自引率
7.40%
发文量
1288
审稿时长
2.1 months
期刊介绍: Journal of Physics: Condensed Matter covers the whole of condensed matter physics including soft condensed matter and nanostructures. Papers may report experimental, theoretical and simulation studies. Note that papers must contain fundamental condensed matter science: papers reporting methods of materials preparation or properties of materials without novel condensed matter content will not be accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信