Maria Caroline de Moura Cavalheiro, Caio Fernando Ramalho de Oliveira, Ana Paula de Araújo Boleti, Layza Sá Rocha, Ana Cristina Jacobowski, Cibele Nicolaski Pedron, Vani Xavier de Oliveira Júnior, Maria Lígia Rodrigues Macedo
{"title":"Evaluating the Antimicrobial Efficacy of a Designed Synthetic peptide against Pathogenic Bacteria.","authors":"Maria Caroline de Moura Cavalheiro, Caio Fernando Ramalho de Oliveira, Ana Paula de Araújo Boleti, Layza Sá Rocha, Ana Cristina Jacobowski, Cibele Nicolaski Pedron, Vani Xavier de Oliveira Júnior, Maria Lígia Rodrigues Macedo","doi":"10.4014/jmb.2405.05011","DOIUrl":null,"url":null,"abstract":"<p><p>Recent research has focused on discovering peptides that effectively target multidrug-resistant bacteria while leaving healthy cells unharmed. In this work, we describe the antimicrobial properties of RK8, a peptide composed of eight amino acid residues. Its activity was tested against multidrug-resistant Gram-negative and Gram-positive bacteria. RK8's efficacy in eradicating mature biofilm and increasing membrane permeability was assessed using Sytox Green. Cytotoxicity assays were conducted both in vitro and in vivo models. Circular dichroism analysis revealed that RK8 adopted an extended structure in water and sodium dodecyl sulfate (SDS). RK8 exhibited MICs of 8-64 μM and MBCs of 4-64 μM against various bacteria, with higher effectiveness observed in Methicillin-resistant <i>Staphylococcus aureus</i> (MRSA) and <i>E. coli</i> KPC+ strains than others. Ciprofloxacin and Vancomycin showed varying MIC and MBC values lower than RK8 for Gram-positive bacteria, but competitive for Gram-negative bacteria. The combination of RK8 and ciprofloxacin showed a synergistic effect. The RK8 peptides could reduce 38% of the mature <i>Acinetobacter baumannii</i> biofilm. Sytox Green reagent achieved 100% membrane permeation of Gram-positive and Gram-negative bacteria. The RK8 peptide did not show cytotoxic effects against murine macrophages (64 μM), erythrocytes (100 μM) or <i>Galleria mellanella</i> larvae (960 μM). In the stability test against peptidases, the RK8 peptide was stable, maintaining around 60% of the molecule intact after 120 min of incubation. These results highlight the potential of RK8 to be a promising strategy for developing a new antimicrobial and antibiofilm agent, inspiring and motivating further research in antimicrobial peptides.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 11","pages":"2231-2244"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637823/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2405.05011","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent research has focused on discovering peptides that effectively target multidrug-resistant bacteria while leaving healthy cells unharmed. In this work, we describe the antimicrobial properties of RK8, a peptide composed of eight amino acid residues. Its activity was tested against multidrug-resistant Gram-negative and Gram-positive bacteria. RK8's efficacy in eradicating mature biofilm and increasing membrane permeability was assessed using Sytox Green. Cytotoxicity assays were conducted both in vitro and in vivo models. Circular dichroism analysis revealed that RK8 adopted an extended structure in water and sodium dodecyl sulfate (SDS). RK8 exhibited MICs of 8-64 μM and MBCs of 4-64 μM against various bacteria, with higher effectiveness observed in Methicillin-resistant Staphylococcus aureus (MRSA) and E. coli KPC+ strains than others. Ciprofloxacin and Vancomycin showed varying MIC and MBC values lower than RK8 for Gram-positive bacteria, but competitive for Gram-negative bacteria. The combination of RK8 and ciprofloxacin showed a synergistic effect. The RK8 peptides could reduce 38% of the mature Acinetobacter baumannii biofilm. Sytox Green reagent achieved 100% membrane permeation of Gram-positive and Gram-negative bacteria. The RK8 peptide did not show cytotoxic effects against murine macrophages (64 μM), erythrocytes (100 μM) or Galleria mellanella larvae (960 μM). In the stability test against peptidases, the RK8 peptide was stable, maintaining around 60% of the molecule intact after 120 min of incubation. These results highlight the potential of RK8 to be a promising strategy for developing a new antimicrobial and antibiofilm agent, inspiring and motivating further research in antimicrobial peptides.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.