Solvent Polarity Dependent Ultrafast Relaxation Kinetics of ADS800AT Dye.

IF 2.6 4区 化学 Q2 BIOCHEMICAL RESEARCH METHODS
Sajin Ponnan, D Narayana Rao, Sri Ram G Naraharisetty
{"title":"Solvent Polarity Dependent Ultrafast Relaxation Kinetics of ADS800AT Dye.","authors":"Sajin Ponnan, D Narayana Rao, Sri Ram G Naraharisetty","doi":"10.1007/s10895-024-03932-1","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigated the photoexcitation and relaxation kinetics of the ADS800AT dye dissolved in different solvents using transient absorption spectroscopy (TAS) with a white-light continuum probe. The dye was dissolved in various solvents, including dichloromethane (DCM), 1,2-dichlorobenzene (DCB), ethanol, and methanol, to study their impact on the dye's characteristics. The linear absorption peak varied from 835 to 809 nm, depending on the polarity of the solvent, and the pump wavelength for TAS was chosen accordingly. We observed ground-state bleaching and excited-state absorption after exciting the dye with the pump pulse. Global analysis was performed using Glotaran software to fit exponential decay curve models, allowing us to determine the relaxation time of the excited molecule. The relaxation time varied from 198 ps to 508 ps across the different solvents, decreasing as the polarity of the solvent increased. Additionally, we could experimentally correlate the dye molecule's nonlinear properties with the solvent's polarity.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-03932-1","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

This work investigated the photoexcitation and relaxation kinetics of the ADS800AT dye dissolved in different solvents using transient absorption spectroscopy (TAS) with a white-light continuum probe. The dye was dissolved in various solvents, including dichloromethane (DCM), 1,2-dichlorobenzene (DCB), ethanol, and methanol, to study their impact on the dye's characteristics. The linear absorption peak varied from 835 to 809 nm, depending on the polarity of the solvent, and the pump wavelength for TAS was chosen accordingly. We observed ground-state bleaching and excited-state absorption after exciting the dye with the pump pulse. Global analysis was performed using Glotaran software to fit exponential decay curve models, allowing us to determine the relaxation time of the excited molecule. The relaxation time varied from 198 ps to 508 ps across the different solvents, decreasing as the polarity of the solvent increased. Additionally, we could experimentally correlate the dye molecule's nonlinear properties with the solvent's polarity.

ADS800AT 染料的溶剂极性依赖性超快弛豫动力学。
本研究利用白光连续探针瞬态吸收光谱(TAS)研究了溶解在不同溶剂中的 ADS800AT 染料的光激发和弛豫动力学。将染料溶解在二氯甲烷(DCM)、1,2-二氯苯(DCB)、乙醇和甲醇等不同溶剂中,研究它们对染料特性的影响。线性吸收峰在 835 到 809 纳米之间变化,这取决于溶剂的极性,TAS 的泵波长也相应选择。我们观察到了泵脉冲激发染料后的基态漂白和激发态吸收。我们使用 Glotaran 软件进行了全局分析,拟合了指数衰减曲线模型,从而确定了激发态分子的弛豫时间。不同溶剂的弛豫时间从 198 ps 到 508 ps 不等,随着溶剂极性的增加而减少。此外,我们还可以通过实验将染料分子的非线性特性与溶剂的极性联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Fluorescence
Journal of Fluorescence 化学-分析化学
CiteScore
4.60
自引率
7.40%
发文量
203
审稿时长
5.4 months
期刊介绍: Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信