Lindsay E Martin, Monzerrat Ruiz, Julián F Hillyer
{"title":"Senescence of humoral antimicrobial immunity occurs in infected mosquitoes when the temperature is higher.","authors":"Lindsay E Martin, Monzerrat Ruiz, Julián F Hillyer","doi":"10.1242/jeb.248149","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquitoes cannot use metabolism to regulate their body temperature and therefore climate warming is altering their physiology. Mosquitoes also experience a physiological decline with aging, a phenomenon called senescence. Because both high temperature and aging are detrimental to mosquitoes, we hypothesized that high temperatures accelerate senescence. Here, we investigated how temperature and aging, independently and interactively, shape the antimicrobial immune response of the mosquito Anopheles gambiae. Using a zone-of-inhibition assay that measures the antimicrobial activity of hemolymph, we found that antimicrobial activity increases following infection. Moreover, in infected mosquitoes, antimicrobial activity weakens as the temperature rises to 32°C, and antimicrobial activity increases from 1 to 5 days of age and stabilizes with further aging. Importantly, in E. coli-infected mosquitoes, higher temperature causes an aging-dependent decline in antimicrobial activity. Altogether, this study demonstrates that higher temperature can accelerate immune senescence in infected mosquitoes, thereby interactively shaping their ability to fight an infection.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.248149","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mosquitoes cannot use metabolism to regulate their body temperature and therefore climate warming is altering their physiology. Mosquitoes also experience a physiological decline with aging, a phenomenon called senescence. Because both high temperature and aging are detrimental to mosquitoes, we hypothesized that high temperatures accelerate senescence. Here, we investigated how temperature and aging, independently and interactively, shape the antimicrobial immune response of the mosquito Anopheles gambiae. Using a zone-of-inhibition assay that measures the antimicrobial activity of hemolymph, we found that antimicrobial activity increases following infection. Moreover, in infected mosquitoes, antimicrobial activity weakens as the temperature rises to 32°C, and antimicrobial activity increases from 1 to 5 days of age and stabilizes with further aging. Importantly, in E. coli-infected mosquitoes, higher temperature causes an aging-dependent decline in antimicrobial activity. Altogether, this study demonstrates that higher temperature can accelerate immune senescence in infected mosquitoes, thereby interactively shaping their ability to fight an infection.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.