van Oordt Francis, Jaime Silva, Allison Patterson, Kyle H Elliott
{"title":"Plunge-diving into dynamic body acceleration and energy expenditure in the Peruvian booby.","authors":"van Oordt Francis, Jaime Silva, Allison Patterson, Kyle H Elliott","doi":"10.1242/jeb.249555","DOIUrl":null,"url":null,"abstract":"<p><p>Daily energy expenditure (DEE) is the result of decisions on how to allocate time among activities (resting, commuting, and foraging) and the energy costs of those activities. Dynamic body acceleration (DBA), which measures acceleration associated with movement, can be used to estimate DEE. Previous studies of DBA-DEE correlations in birds occurred on species foraging below their thermoneutral zone, potentially decoupling the DBA-DEE relationship. We used doubly-labelled water (DLW) to validate the use of DBA on plunge-diving seabirds, Peruvian boobies (Sula variegata), foraging in waters above their thermoneutral zone (>19 °C). Mass-specific DEEDLW in boobies was 1.12 kJ/d/g, and higher in males than in females. DBA alone provided the best fitting model to estimate mass-specific DEEDLW compared to models partitioned per activity and time-budget models. Nonetheless, the model parametrizing activity at and away of their onshore breeding colony was the most parsimonious model (r=0.6). This r value, although high, is lower than all other avian studies, implying that temperature is not the main cause of DBA-DEE decoupling in birds. Time at the colony (∼80% of the day) was the largest contributor to DEE as it was the most time-consuming activity and involved nest defense. However, foraging was the most power-consuming activity (4.6 times higher activity-specific metabolic rate than resting at the colony), and commuting-flight was higher than in other gliding seabirds. In short, DBA alone can act as a proxy for DEE, opening avenues to measure the conservation energetics of this seabird in the rapidly-changing Peruvian Humboldt Current System.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249555","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Daily energy expenditure (DEE) is the result of decisions on how to allocate time among activities (resting, commuting, and foraging) and the energy costs of those activities. Dynamic body acceleration (DBA), which measures acceleration associated with movement, can be used to estimate DEE. Previous studies of DBA-DEE correlations in birds occurred on species foraging below their thermoneutral zone, potentially decoupling the DBA-DEE relationship. We used doubly-labelled water (DLW) to validate the use of DBA on plunge-diving seabirds, Peruvian boobies (Sula variegata), foraging in waters above their thermoneutral zone (>19 °C). Mass-specific DEEDLW in boobies was 1.12 kJ/d/g, and higher in males than in females. DBA alone provided the best fitting model to estimate mass-specific DEEDLW compared to models partitioned per activity and time-budget models. Nonetheless, the model parametrizing activity at and away of their onshore breeding colony was the most parsimonious model (r=0.6). This r value, although high, is lower than all other avian studies, implying that temperature is not the main cause of DBA-DEE decoupling in birds. Time at the colony (∼80% of the day) was the largest contributor to DEE as it was the most time-consuming activity and involved nest defense. However, foraging was the most power-consuming activity (4.6 times higher activity-specific metabolic rate than resting at the colony), and commuting-flight was higher than in other gliding seabirds. In short, DBA alone can act as a proxy for DEE, opening avenues to measure the conservation energetics of this seabird in the rapidly-changing Peruvian Humboldt Current System.
期刊介绍:
Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.