Viral infection induces inflammatory signals that coordinate YAP regulation of dysplastic cells in lung alveoli.

IF 13.3 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Xiuyu Lin, Weicheng Chen, Guilin Yang, Jiazhu Zhang, Huilin Wang, Zeyu Liu, Ying Xi, Tao Ren, Bo Liu, Pengfei Sui
{"title":"Viral infection induces inflammatory signals that coordinate YAP regulation of dysplastic cells in lung alveoli.","authors":"Xiuyu Lin, Weicheng Chen, Guilin Yang, Jiazhu Zhang, Huilin Wang, Zeyu Liu, Ying Xi, Tao Ren, Bo Liu, Pengfei Sui","doi":"10.1172/JCI176828","DOIUrl":null,"url":null,"abstract":"<p><p>Severe viral pneumonia can induce rapid expansion of KRT5+ basal-like cells in small airways and alveoli; this forms a scar-like structure that persists in the injured alveoli and impedes normal alveolar epithelium regeneration. In this study, we investigated the mechanism by which viral infection induced this remodeling response. Through comparing different lung-injury models, we demonstrated that infection induced strong IFN-γ signal-stimulated dysplastic KRT5+ cell formation. Inactivation of interferon receptor 1 (Ifngr1) reduced dysplastic cell formation, ameliorated lung fibrosis, and improved lung-function recovery. Mechanistically, IFN-γ regulated dysplastic cell formation via the focal adhesion kinase (FAK)/Yes-associated protein 1 (YAP) pathway. Inhibiting FAK/Src diminished IFN-γ-induced YAP nuclear translocation and dysplastic cell formation. Inhibiting YAP during viral infection prevented dysplastic cell formation, whereas inhibiting YAP in persistent KRT5+ cells led to their conversion into distal club cells. Importantly, human dysplastic cells exhibited elevated FAK and YAP activity, and IFN-γ treatment promoted the transformation of human alveolar progenitor cells into dysplastic cells. These findings uncover the role of infection-induced inflammatory response in alveolar remodeling and may provide potential therapeutic avenues for the treatment of alveolar remodeling in patients with severe viral pneumonia.</p>","PeriodicalId":15469,"journal":{"name":"Journal of Clinical Investigation","volume":null,"pages":null},"PeriodicalIF":13.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11444164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Investigation","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1172/JCI176828","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Severe viral pneumonia can induce rapid expansion of KRT5+ basal-like cells in small airways and alveoli; this forms a scar-like structure that persists in the injured alveoli and impedes normal alveolar epithelium regeneration. In this study, we investigated the mechanism by which viral infection induced this remodeling response. Through comparing different lung-injury models, we demonstrated that infection induced strong IFN-γ signal-stimulated dysplastic KRT5+ cell formation. Inactivation of interferon receptor 1 (Ifngr1) reduced dysplastic cell formation, ameliorated lung fibrosis, and improved lung-function recovery. Mechanistically, IFN-γ regulated dysplastic cell formation via the focal adhesion kinase (FAK)/Yes-associated protein 1 (YAP) pathway. Inhibiting FAK/Src diminished IFN-γ-induced YAP nuclear translocation and dysplastic cell formation. Inhibiting YAP during viral infection prevented dysplastic cell formation, whereas inhibiting YAP in persistent KRT5+ cells led to their conversion into distal club cells. Importantly, human dysplastic cells exhibited elevated FAK and YAP activity, and IFN-γ treatment promoted the transformation of human alveolar progenitor cells into dysplastic cells. These findings uncover the role of infection-induced inflammatory response in alveolar remodeling and may provide potential therapeutic avenues for the treatment of alveolar remodeling in patients with severe viral pneumonia.

病毒感染会诱发炎症信号,从而协调肺泡中发育不良细胞的 YAP 调节。
重症病毒性肺炎可诱导小气道和肺泡中的 KRT5+基底样细胞迅速扩张;这会形成一种疤痕样结构,持续存在于受伤的肺泡中,阻碍肺泡上皮的正常再生。在这项研究中,我们探讨了病毒感染诱导这种重塑反应的机制。通过比较不同的肺损伤模型,我们发现感染诱导了强烈的 IFN-γ 信号刺激了发育不良的 KRT5+ 细胞形成。干扰素受体1(Ifngr1)的失活减少了发育不良细胞的形成,改善了肺纤维化,并提高了肺功能的恢复。从机理上讲,IFN-γ通过局灶粘附激酶(FAK)/Yes相关蛋白1(YAP)途径调节发育不良细胞的形成。抑制FAK/Src可减少IFN-γ诱导的YAP核转位和发育不良细胞的形成。在病毒感染期间抑制 YAP 可防止发育不良细胞的形成,而在持续存在的 KRT5+ 细胞中抑制 YAP 则会导致它们转化为远端俱乐部细胞。重要的是,人类发育不良细胞表现出FAK和YAP活性升高,IFN-γ处理促进了人类肺泡祖细胞向发育不良细胞的转化。这些发现揭示了感染诱导的炎症反应在肺泡重塑中的作用,并为治疗重症病毒性肺炎患者的肺泡重塑提供了潜在的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Clinical Investigation
Journal of Clinical Investigation 医学-医学:研究与实验
CiteScore
24.50
自引率
1.30%
发文量
1034
审稿时长
2 months
期刊介绍: The Journal of Clinical Investigation, established in 1924 by the ASCI, is a prestigious publication that focuses on breakthroughs in basic and clinical biomedical science, with the goal of advancing the field of medicine. With an impressive Impact Factor of 15.9 in 2022, it is recognized as one of the leading journals in the "Medicine, Research & Experimental" category of the Web of Science. The journal attracts a diverse readership from various medical disciplines and sectors. It publishes a wide range of research articles encompassing all biomedical specialties, including Autoimmunity, Gastroenterology, Immunology, Metabolism, Nephrology, Neuroscience, Oncology, Pulmonology, Vascular Biology, and many others. The Editorial Board consists of esteemed academic editors who possess extensive expertise in their respective fields. They are actively involved in research, ensuring the journal's high standards of publication and scientific rigor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信