Accurate nuclear quantum statistics on machine-learned classical effective potentials.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Iryna Zaporozhets, Félix Musil, Venkat Kapil, Cecilia Clementi
{"title":"Accurate nuclear quantum statistics on machine-learned classical effective potentials.","authors":"Iryna Zaporozhets, Félix Musil, Venkat Kapil, Cecilia Clementi","doi":"10.1063/5.0226764","DOIUrl":null,"url":null,"abstract":"<p><p>The contribution of nuclear quantum effects (NQEs) to the properties of various hydrogen-bound systems, including biomolecules, is increasingly recognized. Despite the development of many acceleration techniques, the computational overhead of incorporating NQEs in complex systems is sizable, particularly at low temperatures. In this work, we leverage deep learning and multiscale coarse-graining techniques to mitigate the computational burden of path integral molecular dynamics (PIMD). In particular, we employ a machine-learned potential to accurately represent corrections to classical potentials, thereby significantly reducing the computational cost of simulating NQEs. We validate our approach using four distinct systems: Morse potential, Zundel cation, single water molecule, and bulk water. Our framework allows us to accurately compute position-dependent static properties, as demonstrated by the excellent agreement obtained between the machine-learned potential and computationally intensive PIMD calculations, even in the presence of strong NQEs. This approach opens the way to the development of transferable machine-learned potentials capable of accurately reproducing NQEs in a wide range of molecular systems.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226764","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The contribution of nuclear quantum effects (NQEs) to the properties of various hydrogen-bound systems, including biomolecules, is increasingly recognized. Despite the development of many acceleration techniques, the computational overhead of incorporating NQEs in complex systems is sizable, particularly at low temperatures. In this work, we leverage deep learning and multiscale coarse-graining techniques to mitigate the computational burden of path integral molecular dynamics (PIMD). In particular, we employ a machine-learned potential to accurately represent corrections to classical potentials, thereby significantly reducing the computational cost of simulating NQEs. We validate our approach using four distinct systems: Morse potential, Zundel cation, single water molecule, and bulk water. Our framework allows us to accurately compute position-dependent static properties, as demonstrated by the excellent agreement obtained between the machine-learned potential and computationally intensive PIMD calculations, even in the presence of strong NQEs. This approach opens the way to the development of transferable machine-learned potentials capable of accurately reproducing NQEs in a wide range of molecular systems.

机器学习经典有效势上的精确核量子统计。
核量子效应(NQEs)对包括生物分子在内的各种氢结合系统特性的贡献日益得到认可。尽管开发了许多加速技术,但将核量子效应纳入复杂系统的计算开销仍然相当大,尤其是在低温条件下。在这项工作中,我们利用深度学习和多尺度粗粒化技术来减轻路径积分分子动力学(PIMD)的计算负担。特别是,我们采用机器学习势来准确表示对经典势的修正,从而大大降低了模拟 NQE 的计算成本。我们使用四个不同的系统验证了我们的方法:莫尔斯电势、尊德尔阳离子、单个水分子和体水。我们的框架允许我们精确计算与位置相关的静态特性,机器学习的电势与计算密集型 PIMD 计算之间的出色一致性证明了这一点,即使在存在强 NQE 的情况下也是如此。这种方法为开发可转移的机器学习势开辟了道路,机器学习势能够在广泛的分子体系中准确地再现 NQE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信