Fingerprints of ordered self-assembled structures in the liquid phase of a hard-core, square-shoulder system.

IF 3.1 2区 化学 Q3 CHEMISTRY, PHYSICAL
Michael Wassermair, Gerhard Kahl, Roland Roth, Andrew J Archer
{"title":"Fingerprints of ordered self-assembled structures in the liquid phase of a hard-core, square-shoulder system.","authors":"Michael Wassermair, Gerhard Kahl, Roland Roth, Andrew J Archer","doi":"10.1063/5.0226954","DOIUrl":null,"url":null,"abstract":"<p><p>We investigate the phase ordering (pattern formation) of systems of two-dimensional core-shell particles using Monte Carlo (MC) computer simulations and classical density functional theory (DFT). The particles interact via a pair potential having a hard core and a repulsive square shoulder. Our simulations show that on cooling, the liquid state structure becomes increasingly characterized by long wavelength density modulations and on further cooling forms a variety of other phases, including clustered, striped, and other patterned phases. In DFT, the hard core part of the potential is treated using either fundamental measure theory or a simple local density approximation, whereas the soft shoulder is treated using the random phase approximation. The different DFTs are benchmarked using large-scale grand-canonical-MC and Gibbs-ensemble-MC simulations, demonstrating their predictive capabilities and shortcomings. We find that having the liquid state static structure factor S(k) for wavenumber k is sufficient to identify the Fourier modes governing both the liquid and solid phases. This allows us to identify from easier-to-obtain liquid state data the wavenumbers relevant to the periodic phases and to predict roughly where in the phase diagram these patterned phases arise.</p>","PeriodicalId":15313,"journal":{"name":"Journal of Chemical Physics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1063/5.0226954","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the phase ordering (pattern formation) of systems of two-dimensional core-shell particles using Monte Carlo (MC) computer simulations and classical density functional theory (DFT). The particles interact via a pair potential having a hard core and a repulsive square shoulder. Our simulations show that on cooling, the liquid state structure becomes increasingly characterized by long wavelength density modulations and on further cooling forms a variety of other phases, including clustered, striped, and other patterned phases. In DFT, the hard core part of the potential is treated using either fundamental measure theory or a simple local density approximation, whereas the soft shoulder is treated using the random phase approximation. The different DFTs are benchmarked using large-scale grand-canonical-MC and Gibbs-ensemble-MC simulations, demonstrating their predictive capabilities and shortcomings. We find that having the liquid state static structure factor S(k) for wavenumber k is sufficient to identify the Fourier modes governing both the liquid and solid phases. This allows us to identify from easier-to-obtain liquid state data the wavenumbers relevant to the periodic phases and to predict roughly where in the phase diagram these patterned phases arise.

硬核方肩体系液相中有序自组装结构的指纹。
我们利用蒙特卡罗(MC)计算机模拟和经典密度泛函理论(DFT)研究了二维核壳粒子系统的相序(模式形成)。粒子通过具有硬核和斥性方肩的对势能相互作用。我们的模拟结果表明,在冷却过程中,液态结构越来越多地表现为长波长密度调制,并在进一步冷却过程中形成各种其他相,包括簇状相、条状相和其他图案相。在 DFT 中,使用基本量度理论或简单的局部密度近似来处理势的硬核部分,而使用随机相近似来处理软肩。我们利用大规模大规范数模转换和吉布斯集合数模转换模拟对不同的 DFT 进行了基准测试,以证明它们的预测能力和不足之处。我们发现,拥有波长 k 的液态静态结构因子 S(k) 就足以确定液相和固相的傅立叶模式。这使我们能够从更容易获得的液态数据中识别出与周期相相关的波数,并大致预测出这些模式相在相图中的位置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Chemical Physics
Journal of Chemical Physics 物理-物理:原子、分子和化学物理
CiteScore
7.40
自引率
15.90%
发文量
1615
审稿时长
2 months
期刊介绍: The Journal of Chemical Physics publishes quantitative and rigorous science of long-lasting value in methods and applications of chemical physics. The Journal also publishes brief Communications of significant new findings, Perspectives on the latest advances in the field, and Special Topic issues. The Journal focuses on innovative research in experimental and theoretical areas of chemical physics, including spectroscopy, dynamics, kinetics, statistical mechanics, and quantum mechanics. In addition, topical areas such as polymers, soft matter, materials, surfaces/interfaces, and systems of biological relevance are of increasing importance. Topical coverage includes: Theoretical Methods and Algorithms Advanced Experimental Techniques Atoms, Molecules, and Clusters Liquids, Glasses, and Crystals Surfaces, Interfaces, and Materials Polymers and Soft Matter Biological Molecules and Networks.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信