Mehulkumar Patel, Anna Parrish, Carlos Serna III, Megan Jamiolkowski, Keerthana Srinivasan, Richard Malinauskas, Qijin Lu
{"title":"Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials","authors":"Mehulkumar Patel, Anna Parrish, Carlos Serna III, Megan Jamiolkowski, Keerthana Srinivasan, Richard Malinauskas, Qijin Lu","doi":"10.1002/jbm.b.35491","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>To develop standardized in vitro thrombogenicity test methods for evaluating medical device materials, three platelet activation biomarkers, beta-thromboglobulin (β-TG), platelet factor 4 (PF4), soluble p-selectin (CD62P), and a plasma coagulation marker, thrombin–antithrombin complex (TAT), were investigated. Whole blood, drawn from six healthy human volunteers into Anticoagulant Citrate Dextrose Solution A was recalcified and heparinized over a concentration range of 0.5–1.5 U/mL. The blood was incubated with test materials with different thrombogenic potentials for 60 min at 37°C, using a 6 cm<sup>2</sup>/mL material surface area to blood volume ratio. After incubation, the blood platelet count was measured before centrifuging the blood to prepare platelet-poor plasma (PPP) and platelet-free plasma (PFP) for enzyme-linked immunosorbent assay analysis of the biomarkers. The results show that all four markers effectively differentiated the materials with different thrombogenic potentials at heparin concentrations from 1.0 to 1.5 U/mL. When a donor-specific heparin concentration (determined by activated clotting time) was used, the markers were able to differentiate materials consistently for blood from all the donors. Additionally, using PFP instead of PPP further improved the test method's ability to differentiate the thrombogenic materials from the negative control for β-TG and TAT. Moreover, the platelet activation markers were able to detect reversible platelet activation induced by adenosine diphosphate (ADP). In summary, all three platelet activation markers (β-TG, PF4, and CD62P) can distinguish thrombogenic potentials of different materials and detect ADP-induced reversible platelet activation. Test consistency and sensitivity can be enhanced by using a donor-specific heparin concentration and PFP. The same test conditions are applicable to the measurement of coagulation marker TAT.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35491","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To develop standardized in vitro thrombogenicity test methods for evaluating medical device materials, three platelet activation biomarkers, beta-thromboglobulin (β-TG), platelet factor 4 (PF4), soluble p-selectin (CD62P), and a plasma coagulation marker, thrombin–antithrombin complex (TAT), were investigated. Whole blood, drawn from six healthy human volunteers into Anticoagulant Citrate Dextrose Solution A was recalcified and heparinized over a concentration range of 0.5–1.5 U/mL. The blood was incubated with test materials with different thrombogenic potentials for 60 min at 37°C, using a 6 cm2/mL material surface area to blood volume ratio. After incubation, the blood platelet count was measured before centrifuging the blood to prepare platelet-poor plasma (PPP) and platelet-free plasma (PFP) for enzyme-linked immunosorbent assay analysis of the biomarkers. The results show that all four markers effectively differentiated the materials with different thrombogenic potentials at heparin concentrations from 1.0 to 1.5 U/mL. When a donor-specific heparin concentration (determined by activated clotting time) was used, the markers were able to differentiate materials consistently for blood from all the donors. Additionally, using PFP instead of PPP further improved the test method's ability to differentiate the thrombogenic materials from the negative control for β-TG and TAT. Moreover, the platelet activation markers were able to detect reversible platelet activation induced by adenosine diphosphate (ADP). In summary, all three platelet activation markers (β-TG, PF4, and CD62P) can distinguish thrombogenic potentials of different materials and detect ADP-induced reversible platelet activation. Test consistency and sensitivity can be enhanced by using a donor-specific heparin concentration and PFP. The same test conditions are applicable to the measurement of coagulation marker TAT.
期刊介绍:
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats:
• original research reports
• short research and development reports
• scientific reviews
• current concepts articles
• special reports
• editorials
Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.