Spectral analysis comparison of pushbroom and snapshot hyperspectral cameras for in vivo brain tissues and chromophore identification.

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS
Journal of Biomedical Optics Pub Date : 2024-09-01 Epub Date: 2024-09-24 DOI:10.1117/1.JBO.29.9.093510
Alberto Martín-Pérez, Alejandro Martinez de Ternero, Alfonso Lagares, Eduardo Juarez, César Sanz
{"title":"Spectral analysis comparison of pushbroom and snapshot hyperspectral cameras for <i>in vivo</i> brain tissues and chromophore identification.","authors":"Alberto Martín-Pérez, Alejandro Martinez de Ternero, Alfonso Lagares, Eduardo Juarez, César Sanz","doi":"10.1117/1.JBO.29.9.093510","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Hyperspectral imaging sensors have rapidly advanced, aiding in tumor diagnostics for <i>in vivo</i> brain tumors. Linescan cameras effectively distinguish between pathological and healthy tissue, whereas snapshot cameras offer a potential alternative to reduce acquisition time.</p><p><strong>Aim: </strong>Our research compares linescan and snapshot hyperspectral cameras for <i>in vivo</i> brain tissues and chromophore identification.</p><p><strong>Approach: </strong>We compared a linescan pushbroom camera and a snapshot camera using images from 10 patients with various pathologies. Objective comparisons were made using unnormalized and normalized data for healthy and pathological tissues. We utilized the interquartile range (IQR) for the spectral angle mapping (SAM), the goodness-of-fit coefficient (GFC), and the root mean square error (RMSE) within the 659.95 to 951.42 nm range. In addition, we assessed the ability of both cameras to capture tissue chromophores by analyzing absorbance from reflectance information.</p><p><strong>Results: </strong>The SAM metric indicates reduced dispersion and high similarity between cameras for pathological samples, with a 9.68% IQR for normalized data compared with 2.38% for unnormalized data. This pattern is consistent across GFC and RMSE metrics, regardless of tissue type. Moreover, both cameras could identify absorption peaks of certain chromophores. For instance, using the absorbance measurements of the linescan camera, we obtained SAM values below 0.235 for four peaks, regardless of the tissue and type of data under inspection. These peaks are one for cytochrome b in its oxidized form at <math><mrow><mi>λ</mi> <mo>=</mo> <mn>422</mn> <mtext>  </mtext> <mi>nm</mi></mrow> </math> , two for <math> <mrow> <msub><mrow><mi>HbO</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </mrow> </math> at <math><mrow><mi>λ</mi> <mo>=</mo> <mn>542</mn> <mtext>  </mtext> <mi>nm</mi></mrow> </math> and <math><mrow><mi>λ</mi> <mo>=</mo> <mn>576</mn> <mtext>  </mtext> <mi>nm</mi></mrow> </math> , and one for water at <math><mrow><mi>λ</mi> <mo>=</mo> <mn>976</mn> <mtext>  </mtext> <mi>nm</mi></mrow> </math> .</p><p><strong>Conclusion: </strong>The spectral signatures of the cameras show more similarity with unnormalized data, likely due to snapshot sensor noise, resulting in noisier signatures post-normalization. Comparisons in this study suggest that snapshot cameras might be viable alternatives to linescan cameras for real-time brain tissue identification.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"29 9","pages":"093510"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11420787/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.29.9.093510","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Hyperspectral imaging sensors have rapidly advanced, aiding in tumor diagnostics for in vivo brain tumors. Linescan cameras effectively distinguish between pathological and healthy tissue, whereas snapshot cameras offer a potential alternative to reduce acquisition time.

Aim: Our research compares linescan and snapshot hyperspectral cameras for in vivo brain tissues and chromophore identification.

Approach: We compared a linescan pushbroom camera and a snapshot camera using images from 10 patients with various pathologies. Objective comparisons were made using unnormalized and normalized data for healthy and pathological tissues. We utilized the interquartile range (IQR) for the spectral angle mapping (SAM), the goodness-of-fit coefficient (GFC), and the root mean square error (RMSE) within the 659.95 to 951.42 nm range. In addition, we assessed the ability of both cameras to capture tissue chromophores by analyzing absorbance from reflectance information.

Results: The SAM metric indicates reduced dispersion and high similarity between cameras for pathological samples, with a 9.68% IQR for normalized data compared with 2.38% for unnormalized data. This pattern is consistent across GFC and RMSE metrics, regardless of tissue type. Moreover, both cameras could identify absorption peaks of certain chromophores. For instance, using the absorbance measurements of the linescan camera, we obtained SAM values below 0.235 for four peaks, regardless of the tissue and type of data under inspection. These peaks are one for cytochrome b in its oxidized form at λ = 422    nm , two for HbO 2 at λ = 542    nm and λ = 576    nm , and one for water at λ = 976    nm .

Conclusion: The spectral signatures of the cameras show more similarity with unnormalized data, likely due to snapshot sensor noise, resulting in noisier signatures post-normalization. Comparisons in this study suggest that snapshot cameras might be viable alternatives to linescan cameras for real-time brain tissue identification.

用于活体脑组织和发色团识别的推帚式和快照式高光谱相机的光谱分析比较。
意义重大:高光谱成像传感器发展迅速,有助于体内脑肿瘤的诊断。线扫描照相机能有效区分病理组织和健康组织,而快照照相机则为缩短采集时间提供了一种潜在的替代方法。目的:我们的研究比较了线扫描和快照高光谱照相机在体内脑组织和发色团识别方面的应用:方法:我们使用 10 位不同病症患者的图像,对线扫描推帚相机和快照相机进行了比较。我们使用健康组织和病理组织的未归一化和归一化数据进行了客观比较。在 659.95 至 951.42 nm 范围内,我们使用了光谱角映射 (SAM) 的四分位数间距 (IQR)、拟合优度系数 (GFC) 和均方根误差 (RMSE)。此外,我们还通过分析反射信息中的吸光度,评估了两种相机捕捉组织发色团的能力:结果:SAM 指标表明,病理样本的相机之间的分散性降低,相似性提高,归一化数据的 IQR 为 9.68%,而非归一化数据的 IQR 为 2.38%。无论组织类型如何,这种模式在 GFC 和 RMSE 指标上都是一致的。此外,两种相机都能识别某些发色团的吸收峰。例如,利用线扫描相机的吸光度测量结果,我们获得了四个峰值的 SAM 值低于 0.235,而与检测的组织和数据类型无关。这些峰分别是 λ = 422 nm 处的氧化型细胞色素 b 峰、λ = 542 nm 和 λ = 576 nm 处的两个 HbO 2 峰以及 λ = 976 nm 处的一个水峰:照相机的光谱特征与未归一化数据显示出更多的相似性,这可能是由于快照传感器噪声导致归一化后的特征更嘈杂。本研究的比较结果表明,快照照相机可能是线扫描照相机的可行替代品,可用于实时脑组织识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信