Mengyuan Luo, Mingli Yuan, Chunhua Ji, Jiakai Gao, Zhaoyong Shi
{"title":"Mycorrhizal types determined the response of yield of woody bioenergy crops to environmental factors.","authors":"Mengyuan Luo, Mingli Yuan, Chunhua Ji, Jiakai Gao, Zhaoyong Shi","doi":"10.1007/s10123-024-00601-y","DOIUrl":null,"url":null,"abstract":"<p><p>Meeting the demand for energy solely through fossil fuels has posed challenges. To mitigate the risk of energy shortage, woody bioenergy crops as a renewable energy feedstock have been the subject of many researchers. Also, mycorrhizas play an important role in crop productivity and inevitably affect the biomass yield of woody bioenergy crops. Based on a global synthesis of biomass yield of woody bioenergy crops, a framework for identifying and comparing bioenergy crop biomass in response to mycorrhizal type was developed. Our results found that the biomass yield of woody bioenergy crops in descending order was ectomycorrhizas (ECM) crops (10.2 ton DM ha<sup>-1</sup> year<sup>-1</sup>) > arbuscular mycorrhizas (AM)+ECM crops (8.8 ton DM ha<sup>-1</sup> year<sup>-1</sup>) > AM crops (8.0 ton DM ha<sup>-1</sup> year<sup>-1</sup>). In addition, our analysis revealed that the climate had the strongest effect on biomass yield in AM and ECM crops, whereas geography exerted the most significant influence on biomass yield in AM+ECM crops. Furthermore, there were differences in the biomass yield response of different mycorrhizal and plant types to geographic (latitude and elevation) and climatic factors (mean annual temperature (MAT) and mean annual precipitation (MAP)). When cultivating AM crops, we can focus more on temperature conditions-warmer locations, whereas for ECM crops, selecting regions with higher precipitation levels is advantageous. This study revealed the relationship between mycorrhizae and bioenergy crops. It provides data and theoretical support to rationalize differences in different woody bioenergy crops and their different responses to global change and increased production of bioenergy crops.</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-024-00601-y","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Meeting the demand for energy solely through fossil fuels has posed challenges. To mitigate the risk of energy shortage, woody bioenergy crops as a renewable energy feedstock have been the subject of many researchers. Also, mycorrhizas play an important role in crop productivity and inevitably affect the biomass yield of woody bioenergy crops. Based on a global synthesis of biomass yield of woody bioenergy crops, a framework for identifying and comparing bioenergy crop biomass in response to mycorrhizal type was developed. Our results found that the biomass yield of woody bioenergy crops in descending order was ectomycorrhizas (ECM) crops (10.2 ton DM ha-1 year-1) > arbuscular mycorrhizas (AM)+ECM crops (8.8 ton DM ha-1 year-1) > AM crops (8.0 ton DM ha-1 year-1). In addition, our analysis revealed that the climate had the strongest effect on biomass yield in AM and ECM crops, whereas geography exerted the most significant influence on biomass yield in AM+ECM crops. Furthermore, there were differences in the biomass yield response of different mycorrhizal and plant types to geographic (latitude and elevation) and climatic factors (mean annual temperature (MAT) and mean annual precipitation (MAP)). When cultivating AM crops, we can focus more on temperature conditions-warmer locations, whereas for ECM crops, selecting regions with higher precipitation levels is advantageous. This study revealed the relationship between mycorrhizae and bioenergy crops. It provides data and theoretical support to rationalize differences in different woody bioenergy crops and their different responses to global change and increased production of bioenergy crops.
期刊介绍:
International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials.
A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.