{"title":"Rare forms of hypomyelination and delayed myelination.","authors":"Eleonora Mura, Cecilia Parazzini, Davide Tonduti","doi":"10.1016/B978-0-323-99209-1.00002-8","DOIUrl":null,"url":null,"abstract":"<p><p>Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"204 ","pages":"225-252"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-323-99209-1.00002-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Hypomyelination is defined by the evidence of an unchanged pattern of deficient myelination on two MRIs performed at least 6 months apart in a child older than 1 year. When the temporal criteria are not fulfilled, and the follow-up MRI shows a progression of the myelination even if still not adequate for age, hypomyelination is excluded and the pattern is instead consistent with delayed myelination. This can be mild and nonspecific in some cases, while in other cases there is a severe delay that in the first disease stages could be difficult to differentiate from hypomyelination. In hypomyelinating leukodystrophies, hypomyelination is due to a primary impairment of myelin deposition, such as in Pelizaeus Merzabcher disease. Conversely, myelin lack is secondary, often to primary neuronal disorders, in delayed myelination and some condition with hypomyelination. Overall, the group of inherited white matter disorders with abnormal myelination has expanded significantly during the past 20 years. Many of these disorders have only recently been described, for many of them only a few patients have been reported and this contributes to make challenging the diagnostic process and the interpretation of Next Generation Sequencing results. In this chapter, we review the clinical and radiologic features of rare and lesser known forms of hypomyelination and delayed myelination not mentioned in other chapters of this handbook.
期刊介绍:
The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.