Inherited white matter disorders: Hypomyelination (myelin disorders).

Q2 Medicine
Stefanie Perrier, Laurence Gauquelin, Geneviève Bernard
{"title":"Inherited white matter disorders: Hypomyelination (myelin disorders).","authors":"Stefanie Perrier, Laurence Gauquelin, Geneviève Bernard","doi":"10.1016/B978-0-323-99209-1.00014-4","DOIUrl":null,"url":null,"abstract":"<p><p>Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.</p>","PeriodicalId":12907,"journal":{"name":"Handbook of clinical neurology","volume":"204 ","pages":"197-223"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Handbook of clinical neurology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/B978-0-323-99209-1.00014-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Hypomyelinating leukodystrophies are a subset of genetic white matter diseases characterized by insufficient myelin deposition during development. MRI patterns are used to identify hypomyelinating disorders, and genetic testing is used to determine the causal genes implicated in individual disease forms. Clinical course can range from severe, with patients manifesting neurologic symptoms in infancy or early childhood, to mild, with onset in adolescence or adulthood. This chapter discusses the most common hypomyelinating leukodystrophies, including X-linked Pelizaeus-Merzbacher disease and other PLP1-related disorders, autosomal recessive Pelizaeus-Merzbacher-like disease, and POLR3-related leukodystrophy. PLP1-related disorders are caused by hemizygous pathogenic variants in the proteolipid protein 1 (PLP1) gene, and encompass classic Pelizaeus-Merzbacher disease, the severe connatal form, PLP1-null syndrome, spastic paraplegia type 2, and hypomyelination of early myelinating structures. Pelizaeus-Merzbacher-like disease presents a similar clinical picture to Pelizaeus-Merzbacher disease, however, it is caused by biallelic pathogenic variants in the GJC2 gene, which encodes for the gap junction protein Connexin-47. POLR3-related leukodystrophy, or 4H leukodystrophy (hypomyelination, hypodontia, and hypogonadotropic hypogonadism), is caused by biallelic pathogenic variants in genes encoding specific subunits of the transcription enzyme RNA polymerase III. In this chapter, the clinical features, disease pathophysiology and genetics, imaging patterns, as well as supportive and future therapies are discussed for each disorder.

遗传性白质疾病:髓鞘发育不全(髓鞘疾病)。
髓鞘发育不全白质营养不良症是遗传性白质疾病的一个分支,其特点是在发育过程中髓鞘沉积不足。核磁共振成像模式可用于识别髓鞘发育不全症,基因检测可用于确定与个别疾病形式有关的致病基因。临床病程轻重不一,重者在婴儿期或幼儿期就表现出神经症状,轻者在青春期或成年期发病。本章将讨论最常见的骨髓营养不良性白质营养不良症,包括 X 连锁佩利泽斯-默茨巴赫病和其他 PLP1 相关疾病、常染色体隐性佩利泽斯-默茨巴赫样病和 POLR3 相关白质营养不良症。PLP1 相关疾病是由蛋白脂质蛋白 1(PLP1)基因中的半杂合型致病变体引起的,包括典型的佩利泽尤斯-默兹巴赫病、严重的先天性疾病、PLP1-null 综合征、痉挛性截瘫 2 型和早期髓鞘结构髓鞘化不足。佩里泽厄斯-默茨巴赫样病的临床表现与佩里泽厄斯-默茨巴赫病相似,但它是由编码间隙连接蛋白Connexin-47的GJC2基因的双倍性致病变体引起的。POLR3相关性白营养不良症或4H白营养不良症(骨髓营养不良、发育不全和性腺功能低下)是由编码转录酶RNA聚合酶III特定亚基的基因的双倍性致病变体引起的。本章将讨论每种疾病的临床特征、病理生理学和遗传学、成像模式以及支持性疗法和未来疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Handbook of clinical neurology
Handbook of clinical neurology Medicine-Neurology (clinical)
CiteScore
4.10
自引率
0.00%
发文量
302
期刊介绍: The Handbook of Clinical Neurology (HCN) was originally conceived and edited by Pierre Vinken and George Bruyn as a prestigious, multivolume reference work that would cover all the disorders encountered by clinicians and researchers engaged in neurology and allied fields. The first series of the Handbook (Volumes 1-44) was published between 1968 and 1982 and was followed by a second series (Volumes 45-78), guided by the same editors, which concluded in 2002. By that time, the Handbook had come to represent one of the largest scientific works ever published. In 2002, Professors Michael J. Aminoff, François Boller, and Dick F. Swaab took on the responsibility of supervising the third (current) series, the first volumes of which published in 2003. They have designed this series to encompass both clinical neurology and also the basic and clinical neurosciences that are its underpinning. Given the enormity and complexity of the accumulating literature, it is almost impossible to keep abreast of developments in the field, thus providing the raison d''être for the series. The series will thus appeal to clinicians and investigators alike, providing to each an added dimension. Now, more than 140 volumes after it began, the Handbook of Clinical Neurology series has an unparalleled reputation for providing the latest information on fundamental research on the operation of the nervous system in health and disease, comprehensive clinical information on neurological and related disorders, and up-to-date treatment protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信