Tibial transverse transport combined with platelet-rich plasma sustained-release microspheres activates the VEGFA/VEGFR2 pathway to promote microcirculatory reconstruction in diabetic foot ulcer.
{"title":"Tibial transverse transport combined with platelet-rich plasma sustained-release microspheres activates the VEGFA/VEGFR2 pathway to promote microcirculatory reconstruction in diabetic foot ulcer.","authors":"Weiqiang Wei, Tenglong Jiang, Fan Hu, Hong Liu","doi":"10.1080/08977194.2024.2407318","DOIUrl":null,"url":null,"abstract":"<p><p>This study proposes to investigate the therapeutic efficacy and mechanism of combining tibial transverse transport (TTT) with platelet-rich plasma (PRP) for diabetic foot ulcer (DFU). The diabetic rabbit model was constructed with Streptozotocin, which was intervened with TTT and PRP. PRP injection combined with TTT significantly promoted vascularisation and enhanced CD31, VEGFA, and VEGFR2 expressions compared to traditional TTT. However, the VEGFR2 inhibitor suppressed these phenomena. In the <i>in vitro</i> injury model, PRP reversed the diminished human umbilical vein endothelial cells (HUVECs) function and vascularisation caused by high-glucose damage. Additionally, PRP reduced inflammation and oxidative stress (approximately 47% ROS level) and enhanced VEGFA and VEGFR2 expression in HUVECs. However, the knockdown of VEGFR2 reversed the effect of PRP. In conclusion, TTT combined with intraosseous flap injection of PRP sustained-release microspheres activated the VEGFA/VEGFR2 pathway to promote microcirculatory reconstruction in DFU. These findings may provide new potential therapeutic strategies for DFU.</p>","PeriodicalId":12782,"journal":{"name":"Growth factors","volume":" ","pages":"128-144"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Growth factors","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/08977194.2024.2407318","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/27 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposes to investigate the therapeutic efficacy and mechanism of combining tibial transverse transport (TTT) with platelet-rich plasma (PRP) for diabetic foot ulcer (DFU). The diabetic rabbit model was constructed with Streptozotocin, which was intervened with TTT and PRP. PRP injection combined with TTT significantly promoted vascularisation and enhanced CD31, VEGFA, and VEGFR2 expressions compared to traditional TTT. However, the VEGFR2 inhibitor suppressed these phenomena. In the in vitro injury model, PRP reversed the diminished human umbilical vein endothelial cells (HUVECs) function and vascularisation caused by high-glucose damage. Additionally, PRP reduced inflammation and oxidative stress (approximately 47% ROS level) and enhanced VEGFA and VEGFR2 expression in HUVECs. However, the knockdown of VEGFR2 reversed the effect of PRP. In conclusion, TTT combined with intraosseous flap injection of PRP sustained-release microspheres activated the VEGFA/VEGFR2 pathway to promote microcirculatory reconstruction in DFU. These findings may provide new potential therapeutic strategies for DFU.
期刊介绍:
Growth Factors is an international and interdisciplinary vehicle publishing new knowledge and findings on the regulators of cell proliferation, differentiation and survival. The Journal will publish research papers, short communications and reviews on current developments in cell biology, biochemistry, physiology or pharmacology of growth factors, cytokines or hormones which improve our understanding of biology or medicine. Among the various fields of study topics of particular interest include: •Stem cell biology •Growth factor physiology •Structure-activity relationships •Drug development studies •Clinical applications