Polymeric Dural Biomaterials in Spinal Surgery: A Review.

IF 5 3区 化学 Q1 POLYMER SCIENCE
Gels Pub Date : 2024-09-06 DOI:10.3390/gels10090579
Taoxu Yan, Junyao Cheng, Qing He, Yifan Wang, Chuyue Zhang, Da Huang, Jianheng Liu, Zheng Wang
{"title":"Polymeric Dural Biomaterials in Spinal Surgery: A Review.","authors":"Taoxu Yan, Junyao Cheng, Qing He, Yifan Wang, Chuyue Zhang, Da Huang, Jianheng Liu, Zheng Wang","doi":"10.3390/gels10090579","DOIUrl":null,"url":null,"abstract":"<p><p>Laminectomy is a commonly performed surgical procedure by orthopedic and neurosurgeons, aimed at alleviating nerve compression and reducing pain. However, in some cases, excessive proliferation of fibrous scar tissue in the epidural space post-surgery can lead to persistent and intractable lower back pain, a condition known as Failed Back Surgery Syndrome (FBSS). The persistent fibrous tissue causes both physical and emotional distress for patients and also makes follow-up surgeries more challenging due to reduced visibility and greater technical difficulty. It has been established that the application of biomaterials to prevent epidural fibrosis post-lumbar surgery is more beneficial than revision surgeries to relieve dural fibrosis. Hydrogel-based biomaterials, with their excellent biocompatibility, degradability, and injectability and tunable mechanical properties, have been increasingly introduced by clinicians and researchers. This paper, building on the foundation of epidural fibrosis, primarily discusses the strategies for the preparation of natural and polymeric biomaterials to prevent epidural fibrosis, their physicochemical properties, and their ability to mitigate the excessive proliferation of fibroblasts. It also emphasizes the challenges that need to be addressed to translate laboratory research into clinical practice and the latest advancements in this field.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431199/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090579","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Laminectomy is a commonly performed surgical procedure by orthopedic and neurosurgeons, aimed at alleviating nerve compression and reducing pain. However, in some cases, excessive proliferation of fibrous scar tissue in the epidural space post-surgery can lead to persistent and intractable lower back pain, a condition known as Failed Back Surgery Syndrome (FBSS). The persistent fibrous tissue causes both physical and emotional distress for patients and also makes follow-up surgeries more challenging due to reduced visibility and greater technical difficulty. It has been established that the application of biomaterials to prevent epidural fibrosis post-lumbar surgery is more beneficial than revision surgeries to relieve dural fibrosis. Hydrogel-based biomaterials, with their excellent biocompatibility, degradability, and injectability and tunable mechanical properties, have been increasingly introduced by clinicians and researchers. This paper, building on the foundation of epidural fibrosis, primarily discusses the strategies for the preparation of natural and polymeric biomaterials to prevent epidural fibrosis, their physicochemical properties, and their ability to mitigate the excessive proliferation of fibroblasts. It also emphasizes the challenges that need to be addressed to translate laboratory research into clinical practice and the latest advancements in this field.

脊柱手术中的聚合物硬膜生物材料:综述。
椎板切除术是骨科和神经外科医生常用的手术方法,目的是减轻神经压迫和减轻疼痛。然而,在某些情况下,术后硬膜外间隙纤维瘢痕组织的过度增生会导致顽固难治的下背痛,这种情况被称为背部手术失败综合症(FBSS)。顽固的纤维组织会给患者带来身体和精神上的痛苦,而且由于能见度降低和技术难度增加,后续手术更具挑战性。已经证实,应用生物材料预防腰椎手术后硬膜外纤维化比缓解硬膜纤维化的翻修手术更有益。水凝胶类生物材料具有良好的生物相容性、可降解性、可注射性和可调机械性能,已被越来越多的临床医生和研究人员所采用。本文在硬膜外纤维化的基础上,主要讨论了制备天然和高分子生物材料以预防硬膜外纤维化的策略、其理化性质及其缓解成纤维细胞过度增殖的能力。报告还强调了将实验室研究成果转化为临床实践所面临的挑战以及该领域的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gels
Gels POLYMER SCIENCE-
CiteScore
4.70
自引率
19.60%
发文量
707
审稿时长
11 weeks
期刊介绍: The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts. Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信