Lang Yang, Ye Sun, Yue Sun, Jiawen Wang, Lin Chen, Xueliang Feng, Jinggang Wang, Ning Wang, Dong Zhang, Chunxin Ma
{"title":"Anti-Biofouling Polyzwitterion-Poly(amidoxime) Composite Hydrogel for Highly Enhanced Uranium Extraction from Seawater.","authors":"Lang Yang, Ye Sun, Yue Sun, Jiawen Wang, Lin Chen, Xueliang Feng, Jinggang Wang, Ning Wang, Dong Zhang, Chunxin Ma","doi":"10.3390/gels10090603","DOIUrl":null,"url":null,"abstract":"<p><p>Amidoxime-functionalized hydrogels are one of most promising adsorbents for high-efficiency uranium (U) extraction from seawater, but bioadhesion on their surface seriously decreases their adsorption efficiency and largely shortens their service life. Herein, a semi-interpenetrating zwitterion-poly(amidoxime) (ZW-PAO) hydrogel was explored through introducing a PAO polymer into a poly [3-(dimethyl 4-vinylbenzyl amino) propyl sulfonate] (PDVBAP) polyzwitterionic (PZW) network via ultraviolet (UV) polymerization. Owing to the anti-polyelectrolyte effect of the PZW network, this ZW-PAO hydrogel can provide excellent super-hydrophilicity in seawater for high-efficiency U-adsorption from seawater. Furthermore, the ZW-PAO hydrogel had outstanding anti-biofouling performance for both highly enhanced U-adsorption and a relatively long working life in natural seawater. As a result, during only 25 days in seawater (without filtering bacteria), the U-uptake amount of this ZW-PAO hydrogel can reach 9.38 mg/g and its average rate can reach 0.375 mg/(g∙day), which is excellent among reported adsorbents. This work has explored a promising hydrogel for high-efficiency U-recovery from natural seawater and will inspire new strategy for U-adsorbing materials.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"10 9","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11431610/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels10090603","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Amidoxime-functionalized hydrogels are one of most promising adsorbents for high-efficiency uranium (U) extraction from seawater, but bioadhesion on their surface seriously decreases their adsorption efficiency and largely shortens their service life. Herein, a semi-interpenetrating zwitterion-poly(amidoxime) (ZW-PAO) hydrogel was explored through introducing a PAO polymer into a poly [3-(dimethyl 4-vinylbenzyl amino) propyl sulfonate] (PDVBAP) polyzwitterionic (PZW) network via ultraviolet (UV) polymerization. Owing to the anti-polyelectrolyte effect of the PZW network, this ZW-PAO hydrogel can provide excellent super-hydrophilicity in seawater for high-efficiency U-adsorption from seawater. Furthermore, the ZW-PAO hydrogel had outstanding anti-biofouling performance for both highly enhanced U-adsorption and a relatively long working life in natural seawater. As a result, during only 25 days in seawater (without filtering bacteria), the U-uptake amount of this ZW-PAO hydrogel can reach 9.38 mg/g and its average rate can reach 0.375 mg/(g∙day), which is excellent among reported adsorbents. This work has explored a promising hydrogel for high-efficiency U-recovery from natural seawater and will inspire new strategy for U-adsorbing materials.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.