Jayanarayanan Sadanandan, Monica Sathyanesan, Samuel S Newton
{"title":"Aging alters the expression of trophic factors and tight junction proteins in the mouse choroid plexus.","authors":"Jayanarayanan Sadanandan, Monica Sathyanesan, Samuel S Newton","doi":"10.1186/s12987-024-00574-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The choroid plexus (CP) is an understudied tissue in the central nervous system and is primarily implicated in cerebrospinal fluid (CSF) production. CP also produces numerous neurotrophic factors (NTF) which circulate to different brain regions. Regulation of NTFs in the CP during natural aging is largely unknown. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and the water channel protein Aquaporin (AQP1).</p><p><strong>Methods: </strong>Male and female mice were used for our study. Age-related transcriptional changes were analyzed using quantitative PCR at three different time points: mature adult, middle-aged, and aged. Transcriptional changes during aging were further confirmed with digital droplet PCR. Additionally, we used immunohistochemical analysis (IHC) for the evaluation of in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, Plectin.</p><p><strong>Results: </strong>Aging significantly altered NTF gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine (MDK), VGF, Insulin-like growth factor (IGF1), IGF2, Klotho (KL), Erythropoietin (EPO), and its receptor (EPOR) were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression was unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2 and CLAUDIN5 were reduced in aged mice.</p><p><strong>Conclusions: </strong>Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"77"},"PeriodicalIF":5.9000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11438291/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00574-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The choroid plexus (CP) is an understudied tissue in the central nervous system and is primarily implicated in cerebrospinal fluid (CSF) production. CP also produces numerous neurotrophic factors (NTF) which circulate to different brain regions. Regulation of NTFs in the CP during natural aging is largely unknown. Here, we investigated the age and gender-specific transcription of NTFs along with the changes in the tight junctional proteins (TJPs) and the water channel protein Aquaporin (AQP1).
Methods: Male and female mice were used for our study. Age-related transcriptional changes were analyzed using quantitative PCR at three different time points: mature adult, middle-aged, and aged. Transcriptional changes during aging were further confirmed with digital droplet PCR. Additionally, we used immunohistochemical analysis (IHC) for the evaluation of in vivo protein expression. We further investigated the cellular phenotype of these NTFS, TJP, and water channel proteins in the mouse CP by co-labeling them with the classical vascular marker, Isolectin B4, and epithelial cell marker, Plectin.
Results: Aging significantly altered NTF gene expression in the CP. Brain-derived neurotrophic factor (BDNF), Midkine (MDK), VGF, Insulin-like growth factor (IGF1), IGF2, Klotho (KL), Erythropoietin (EPO), and its receptor (EPOR) were reduced in the aged CP of males and females. Vascular endothelial growth factor (VEGF) transcription was gender-specific; in males, gene expression was unchanged in the aged CP, while females showed an age-dependent reduction. Age-dependent changes in VEGF localization were evident, from vasculature to epithelial cells. IGF2 and klotho localized in the basolateral membrane of the CP and showed an age-dependent reduction in epithelial cells. Water channel protein AQP1 localized in the tip of epithelial cells and showed an age-related reduction in mRNA and protein levels. TJP's JAM, CLAUDIN1, CLAUDIN2 and CLAUDIN5 were reduced in aged mice.
Conclusions: Our study highlights transcriptional level changes in the CP during aging. The age-related transcriptional changes exhibit similarities as well as gene-specific differences in the CP of males and females. Altered transcription of the water channel protein AQP1 and TJPs could be involved in reduced CSF production during aging. Importantly, reduction in the neurotrophic factors and longevity factor Klotho can play a role in regulating brain aging.
期刊介绍:
"Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease.
At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).