Widespread occurrence of dissolved oxygen anomalies, aerobic microbes, and oxygen-producing metabolic pathways in apparently anoxic environments.

IF 3.5 3区 生物学 Q2 MICROBIOLOGY
S Emil Ruff, Laura Schwab, Emeline Vidal, Jordon D Hemingway, Beate Kraft, Ranjani Murali
{"title":"Widespread occurrence of dissolved oxygen anomalies, aerobic microbes, and oxygen-producing metabolic pathways in apparently anoxic environments.","authors":"S Emil Ruff, Laura Schwab, Emeline Vidal, Jordon D Hemingway, Beate Kraft, Ranjani Murali","doi":"10.1093/femsec/fiae132","DOIUrl":null,"url":null,"abstract":"<p><p>Nearly all molecular oxygen (O2) on Earth is produced via oxygenic photosynthesis by plants or photosynthetically active microorganisms. Light-independent O2 production, which occurs both abiotically, e.g. through water radiolysis, or biotically, e.g. through the dismutation of nitric oxide or chlorite, has been thought to be negligible to the Earth system. However, recent work indicates that O2 is produced and consumed in dark and apparently anoxic environments at a much larger scale than assumed. Studies have shown that isotopically light O2 can accumulate in old groundwaters, that strictly aerobic microorganisms are present in many apparently anoxic habitats, and that microbes and metabolisms that can produce O2 without light are widespread and abundant in diverse ecosystems. Analysis of published metagenomic data reveals that the enzyme putatively capable of nitric oxide dismutation forms four major phylogenetic clusters and occurs in at least 16 bacterial phyla, most notably the Bacteroidota. Similarly, a re-analysis of published isotopic signatures of dissolved O2 in groundwater suggests in situ production in up to half of the studied environments. Geochemical and microbiological data support the conclusion that \"dark oxygen production\" is an important and widespread yet overlooked process in apparently anoxic environments with far-reaching implications for subsurface biogeochemistry and ecology.</p>","PeriodicalId":12312,"journal":{"name":"FEMS microbiology ecology","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549561/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FEMS microbiology ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsec/fiae132","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nearly all molecular oxygen (O2) on Earth is produced via oxygenic photosynthesis by plants or photosynthetically active microorganisms. Light-independent O2 production, which occurs both abiotically, e.g. through water radiolysis, or biotically, e.g. through the dismutation of nitric oxide or chlorite, has been thought to be negligible to the Earth system. However, recent work indicates that O2 is produced and consumed in dark and apparently anoxic environments at a much larger scale than assumed. Studies have shown that isotopically light O2 can accumulate in old groundwaters, that strictly aerobic microorganisms are present in many apparently anoxic habitats, and that microbes and metabolisms that can produce O2 without light are widespread and abundant in diverse ecosystems. Analysis of published metagenomic data reveals that the enzyme putatively capable of nitric oxide dismutation forms four major phylogenetic clusters and occurs in at least 16 bacterial phyla, most notably the Bacteroidota. Similarly, a re-analysis of published isotopic signatures of dissolved O2 in groundwater suggests in situ production in up to half of the studied environments. Geochemical and microbiological data support the conclusion that "dark oxygen production" is an important and widespread yet overlooked process in apparently anoxic environments with far-reaching implications for subsurface biogeochemistry and ecology.

在明显缺氧的环境中广泛存在溶解氧异常、好氧微生物和产氧代谢途径。
地球上几乎所有的分子氧(O2)都是由植物或光合作用活跃的微生物通过含氧光合作用产生的。不依赖于光的氧气产生,既可以通过非生物方式(如水的辐射分解),也可以通过生物方式(如一氧化氮或绿泥石的分解),一直被认为对地球系统来说微不足道。然而,最近的研究表明,在黑暗和明显缺氧的环境中,O2 的产生和消耗量比想象的要大得多。研究表明,同位素轻的 O2 可以在古老的地下水中积累;在许多明显缺氧的栖息地中存在严格需氧的微生物;在各种生态系统中,可以在无光的情况下产生 O2 的微生物和代谢物广泛而丰富。对已发表的元基因组数据的分析表明,据推测能进行一氧化氮歧化(NOD)的酶形成了四个主要的系统发育群,至少存在于 16 个细菌门,其中最主要的是类杆菌科。同样,对已发表的地下水中溶解氧同位素特征的重新分析表明,在多达一半的研究生态系统中存在一氧化氮的原位生成。地球化学和微生物学数据支持这一结论,即 "暗氧 "产生是明显缺氧环境中一个重要而广泛却被忽视的过程,对地下生物地球化学和生态学具有深远影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FEMS microbiology ecology
FEMS microbiology ecology 生物-微生物学
CiteScore
7.50
自引率
2.40%
发文量
132
审稿时长
3 months
期刊介绍: FEMS Microbiology Ecology aims to ensure efficient publication of high-quality papers that are original and provide a significant contribution to the understanding of microbial ecology. The journal contains Research Articles and MiniReviews on fundamental aspects of the ecology of microorganisms in natural soil, aquatic and atmospheric habitats, including extreme environments, and in artificial or managed environments. Research papers on pure cultures and in the areas of plant pathology and medical, food or veterinary microbiology will be published where they provide valuable generic information on microbial ecology. Papers can deal with culturable and non-culturable forms of any type of microorganism: bacteria, archaea, filamentous fungi, yeasts, protozoa, cyanobacteria, algae or viruses. In addition, the journal will publish Perspectives, Current Opinion and Controversy Articles, Commentaries and Letters to the Editor on topical issues in microbial ecology. - Application of ecological theory to microbial ecology - Interactions and signalling between microorganisms and with plants and animals - Interactions between microorganisms and their physicochemical enviornment - Microbial aspects of biogeochemical cycles and processes - Microbial community ecology - Phylogenetic and functional diversity of microbial communities - Evolutionary biology of microorganisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信