{"title":"Nitrogen reducing mechanism by microporous aeration based on microbial population characteristics: water temperature factor.","authors":"Cheng Lu, Yong Wang, Shengnan Zhou, Wen Cheng, JiaXuan Wang, XinYan Zhang","doi":"10.1080/09593330.2024.2405665","DOIUrl":null,"url":null,"abstract":"<p><p>The formation of black odour water is primarily attributed to the elevated concentration of organic pollutants, along with an excessive amount of nitrogen and phosphorus, ultimately leading to an anoxic aquatic environment. The water temperature influence mechanism on black-odorous water restoration by microporous aeration is still lacking depth study. This paper selected (15-18) ℃ (spring and autumn), (22-25) ℃ (summer), (8-11) ℃ (winter) as temperature conditions, and investigated temperature influence on nitrogen reduction. Researches showed that: (1) The removal rates of COD, NH<sub>4</sub><sup>+</sup>-N and TN were significantly positively correlated with temperature (r = 0.99, 0.96, 0.97), the lowest removal rates were 83.16%, 95.68%, 58.7% ((8-11) ℃), the highest values were 92.67%, 98.27%, 70.96% ((22-25) ℃), respectively. (2) At a temperature range of 22-25°C, the microbial community exhibited the highest levels of abundance, diversity, and uniformity. Notably, <i>Proteobacteria</i> dominated this temperature range with a relative abundance of 79.72%. Furthermore, temperature positively correlated with the majority of dominant bacterial species, suggesting that conditions at 22-25°C are highly conducive to the growth of most bacterial communities. Among these, <i>Limnohabitans</i>, <i>Alsobacter</i>, and <i>Candidatus_Aquirestis</i>, which possess key functions in denitrification and nitrogen removal, displayed significantly higher abundances. It explains the positive correlation between temperature and removal rates of COD, TN and NH<sub>4</sub><sup>+</sup>-N from microbial population's perspective. Thus, the best temperature for repairing black-smelly water is (22-25) ℃. This study provides technical reference for mechanism research and practical application of microporous aeration.</p>","PeriodicalId":12009,"journal":{"name":"Environmental Technology","volume":" ","pages":"1828-1841"},"PeriodicalIF":2.2000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/09593330.2024.2405665","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/24 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The formation of black odour water is primarily attributed to the elevated concentration of organic pollutants, along with an excessive amount of nitrogen and phosphorus, ultimately leading to an anoxic aquatic environment. The water temperature influence mechanism on black-odorous water restoration by microporous aeration is still lacking depth study. This paper selected (15-18) ℃ (spring and autumn), (22-25) ℃ (summer), (8-11) ℃ (winter) as temperature conditions, and investigated temperature influence on nitrogen reduction. Researches showed that: (1) The removal rates of COD, NH4+-N and TN were significantly positively correlated with temperature (r = 0.99, 0.96, 0.97), the lowest removal rates were 83.16%, 95.68%, 58.7% ((8-11) ℃), the highest values were 92.67%, 98.27%, 70.96% ((22-25) ℃), respectively. (2) At a temperature range of 22-25°C, the microbial community exhibited the highest levels of abundance, diversity, and uniformity. Notably, Proteobacteria dominated this temperature range with a relative abundance of 79.72%. Furthermore, temperature positively correlated with the majority of dominant bacterial species, suggesting that conditions at 22-25°C are highly conducive to the growth of most bacterial communities. Among these, Limnohabitans, Alsobacter, and Candidatus_Aquirestis, which possess key functions in denitrification and nitrogen removal, displayed significantly higher abundances. It explains the positive correlation between temperature and removal rates of COD, TN and NH4+-N from microbial population's perspective. Thus, the best temperature for repairing black-smelly water is (22-25) ℃. This study provides technical reference for mechanism research and practical application of microporous aeration.
期刊介绍:
Environmental Technology is a leading journal for the rapid publication of science and technology papers on a wide range of topics in applied environmental studies, from environmental engineering to environmental biotechnology, the circular economy, municipal and industrial wastewater management, drinking-water treatment, air- and water-pollution control, solid-waste management, industrial hygiene and associated technologies.
Environmental Technology is intended to provide rapid publication of new developments in environmental technology. The journal has an international readership with a broad scientific base. Contributions will be accepted from scientists and engineers in industry, government and universities. Accepted manuscripts are generally published within four months.
Please note that Environmental Technology does not publish any review papers unless for a specified special issue which is decided by the Editor. Please do submit your review papers to our sister journal Environmental Technology Reviews at http://www.tandfonline.com/toc/tetr20/current